• Santos-Lleo, M., Schartel, N., Tananbaum, H., Tucker, W. & Weisskopf, M. C. The first decade of science with Chandra and XMM-Newton. Nature 462, 997–1004 (2009). Review of the first decade of Chandra and XMM science, including many of the major breakthroughs and paradigm shifts that have revolutionized X-ray astronomy and beyond.

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kimura, T. et al. Jupiter’s X-ray and EUV auroras monitored by Chandra, XMM-Newton, and Hisaki satellite. J. Geophys. Res. Space Phys. 121, 2308–2320 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Dunn, W. R. et al. The independent pulsations of Jupiter’s northern and southern X-ray auroras. Nat. Astron. 1, 758–764 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Robrade, J. & Schmitt, J. H. M. M. Coronal activity cycles in action—X-rays from α Centauri A/B. Preprint at https://arxiv.org/abs/1612.06570 (2016).

  • Robrade, J., Schmitt, J. H. M. M. & Favata, F. Coronal activity cycles in nearby G and K stars. XMM-Newton monitoring of 61 Cygni and α Centauri. Astron. Astrophys. 543, 84–94 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Wargelin, B. J., Saar, S. H., Pojmański, G., Drake, J. J. & Kashyap, V. L. Optical, UV, and X-ray evidence for a 7-yr stellar cycle in Proxima Centauri. Mon. Not. R. Astron. Soc. 464, 3281–3296 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Wright, N. J. & Drake, J. Solar-type dynamo behaviour in fully convective stars without a tachocline. Nature 535, 526–528 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Oskinova, L. M. et al. Discovery of X-ray pulsations from a massive star. Nat. Commun. 5, 4024 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roccatagliata, V. et al. Disk evolution in OB associations: deep Spitzer/IRAC observations of IC 1795. Astrophys. J. 733, 113–132 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Guarcello, M. G., Micela, G., Peres, G., Prisinzano, L. & Sciortino, S. Chronology of star formation and disk evolution in the Eagle Nebula. Astron. Astrophys. 521, A61–A77 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Hirose, S. & Turner, N. J. Heating and cooling protostellar disks. Astrophys. J. 732L, 30 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Mulders, G. et al. An increase in the mass of planetary systems around lower-mass stars. Astrophys. J. 814, 130–139 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Wheatley, P. J., Louden, T., Bourrier, V., Ehrenreich, D. & Gillon, M. Strong XUV irradiation of the Earth-sized exoplanets orbiting the ultracool dwarf TRAPPIST-1. Mon. Not. R. Astron. Soc. 465, L74–L78 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Janka, H.-T. Explosion mechanisms of core-collapse supernovae. Ann. Rev. Nucl. Part. Sci. 62, 407–451 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Smith, N. et al. Endurance of SN 2005ip after a decade: X-rays, radio and Hα like SN 1988Z require long-lived pre-supernova mass-loss. Mon. Not. R. Astron. Soc. 466, 3021–3034 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kamble, A. Progenitors of type IIB supernovae in the light of radio and X-rays from SN 2013DF. Astrophys. J. Suppl. Ser. 818, 111–123 (2016).

    Article 

    Google Scholar
     

  • Maeda, K., Katsuda, S., Bamba, A., Terada, Y. & Fukazawa, Y. Long-lasting X-ray emission from type IIb supernova 2011dh and mass-loss history of the yellow supergiant progenitor. Astrophys. J. 785, 95–106 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Margutti, R. Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. Astrophys. J. 864, 45–59 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Frank, K. A. et al. Chandra observes the end of an era for SN1987A. Astrophys. J. 829, 40 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Blandford, R. & Eichler, D. Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys. Rep. 154, 1–75 (1987).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Giordano, F. et al. Fermi Large Area Telescope detection of the young supernova remnant Tycho. Astrophys. J. 744, L2–L7 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Atoyan, A. & Dermer, C. D. Gamma rays from the Tycho supernova remnant: multi-zone versus single-zone modeling. Astrophys. J. 749, L26–L30 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Bykov, A. M., Ellison, D. C., Osipov, S. M., Pavlov, G. G. & Uvarov, Y. A. X-ray stripes in Tycho’s supernova remnant: synchrotron footprints of a nonlinear cosmic-ray-driven instability. Astrophys. J. 735, L40–L50 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Eriksen, K. A. et al. Evidence for particle acceleration to the knee of the cosmic ray spectrum in Tycho’s supernova remnant. Astrophys. J. 728, L28–L32 (2011). Chandra’s exquisite spatial resolution has revealed direct evidence of cosmic-ray acceleration in an SNR that has been predicted for many years.

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Chakraborti, S., Childs, F. & Soderberg, A. Young remnants of type Ia supernovae and their progenitors: a study of SNR G1.9+0.3. Astrophys. J. 819, 37–45 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Burkey, M. T., Reynolds, S. P., Borkowski, K. J. & Blondin, J. M. X-ray emission from strongly asymmetric circumstellar material in the remnant of Kepler’s supernova. Astrophys. J. 764, 63–68 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Broersen, S., Chiotellis, A., Vink, J. & Bamba, A. The many sides of RCW 86: a type Ia supernova remnant evolving in its progenitor’s wind bubble. Mon. Not. R. Astron. Soc. 441, 3040–3054 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Halpern, J. P. & Gotthelf, E. V. Spin-down measurement of PSR J1852+0040 in Kesteven 79: central compact objects as anti-magnetars. Astrophys. J. 709, 436–446 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Halpern, J. P. & Gotthelf, E. V. On the spin-down and magnetic field of the X-ray pulsar 1E 1207.4−5209. Astrophys. J. 733, L28 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Gotthelf, J. E. V., Halpern, J. P. & Alford, J. The spin-down of PSR J0821−4300 and PSR J1210−5226: confirmation of central compact objects as anti-magnetars. Astrophys. J. 765, 58–73 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Mereghetti, S. The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars. Astron. Astrophys. Rev. 15, 225–287 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Younes, G. et al. The wind nebula around magnetar Swift J1834.9−0846. Astrophys. J. 824, 138–149 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Rea, N. et al. The outburst decay of the low magnetic field magnetar SGR 0418+5729. Astrophys. J. 770, 65–78 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Tiengo, A. et al. A variable absorption feature in the X-ray spectrum of a magnetar. Nature 500, 312–314 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • De Luca, A., Caraveo, P. A., Mereghetti, S., Tiengo, A. & Bignami, G. F. A long-period, violently variable X-ray source in a young supernova remnant. Science 313, 81–817 (2006).


    Google Scholar
     

  • Rea, N. et al. Magnetar-like activity from the central compact object in the SNR RCW103. Astrophys. J. 828, L13–L18 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Degenaar, N., Ootes, L. S., Reynolds, M. T., Wijnands, R. & Page, D. A cold neutron star in the transient low-mass X-ray binary HETE J1900.1−2455 after 10 yr of active accretion. Mon. Not. R. Astron. Soc. 465, L10–L14 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Gou, L. et al. Confirmation via the continuum-fitting method that the spin of the black hole in Cygnus X-1 is extreme. Astrophys. J. 790, 29–41 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Duro, R. et al. The broad iron Kα line of Cygnus X-1 as seen by XMM-Newton in the EPIC-pn modified timing mode. Astron. Astrophys. 533, L3–L6 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • King, A. L., Miller, J. M., Raymond, J., Reynolds, M. T. & Morningstar, W. High-resolution Chandra HETG spectroscopy of V404 Cygni in outburst. Astrophys. J. 813, L37–L34 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Díaz Trigo, M., Miller-Jones, J. C. A., Migliari, S., Broderick, J. W. & Tzioumis, T. Baryons in the relativistic jets of the stellar-mass black-hole candidate 4U1630-47. Nature 504, 260–262 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Vink, J. Supernova remnants: the X-ray perspective. Astron. Astrophys. Rev. 20, 49–168 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Heinz, S. et al. The youngest known X-ray binary: Circinus X-1 and its natal supernova remnant. Astrophys. J. 779, 171–178 (2013). Uses the X-ray light echoes from dust clouds along the line of sight during a Circinus X-1 outburst to accurately measure its distance and thus luminosity and age.

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Papitto, A. et al. Swings between rotation and accretion power in a binary millisecond pulsar. Nature 501, 517–520 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pinto, C., Middleton, M. J. & Fabian, A. C. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources. Nature 533, 64–67 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Carpano, S., Haberl, F., Maitra, C. & Vasilopoulos, G. Discovery of pulsations from NGC 300 ULX1 and its fast period evolution. Mon. Not. R. Astron. Soc. 476, L45–L49 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Walton, D. J. et al. Evidence for pulsar-like emission components in the broadband ULX sample. Astrophys. J. 856, 128–140 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Brightman, M. et al. Magnetic field strength of a neutron-star-powered ultraluminous X-ray source. Nat. Astron. 2, 312–313 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Heinz, S. et al. Lord of the rings: a kinematic distance to Circinus X-1 from a giant X-ray light echo. Astrophys. J. 806, 265–283 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Pintore, F. et al. Behind the dust curtain: the spectacular case of GRB 160623A. Mon. Not. R. Astron. Soc. 472, 1465–1472 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Heinz, S. et al. A joint Chandra and Swift view of the 2015 X-ray dust-scattering echo of V404 Cygni. Astrophys. J. 825, 15–34 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848, L12–L70 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Haggard, D. et al. A deep Chandra X-ray study of neutron star coalescence GW170817. Astrophys. J. 848, L25–L30 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Margutti, R. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. V. Rising X-ray emission from an off-axis jet. Astrophys. J. 848, L20–L26 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Troja, E. et al. The X-ray counterpart to the gravitational-wave event GW170817. Nature 551, 71–74 (2017). These three papers (refs. 53, 54 and 55) report the X-ray detections of the gravitational-wave source GW170817, the first electromagnetically detected gravitational-wave source, and a neutron star–neutron star merger.

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Troja, E. et al. A year in the life of GW 170817: the rise and fall of a structured jet from a binary neutron star merger. Mon. Not. R. Astron. Soc. 489, 1919–1926 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • D’Avanzo, P. et al. The evolution of the X-ray afterglow emission of GW170817/GRB170817A in XMM-Newton observations. Astron. Astrophys. 613, L1–L5 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Troja, E. et al. A luminous blue kilonova and an off-axis jet from a compact binary merger at z = 0.1341. Nat. Commun. 9, 4089 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fornasini, F. M. et al. Low-luminosity AGN and X-ray binary populations in COSMOS star-forming galaxies. Astrophys. J. 865, 43–60 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Nardini, E. et al. The exceptional soft X-ray halo of the galaxy merger NGC 6240. Astrophys. J. 765, 141–160 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Roberts, S. R., Jiang, Y.-F., Wang, Q. D. & Ostriker, J. P. Towards self-consistent modelling of the Sgr A* accretion flow: linking theory and observation. Mon. Not. R. Astron. Soc. 466, 1477–1490 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wang, Q. D. et al. Dissecting X-ray-emitting gas around the center of our Galaxy. Science 341, 981–983 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ponti, G. et al. An X-ray chimney extending hundreds of parsecs above and below the Galactic Centre. Nature 567, 347–350 (2019). XMM-Newton has mapped X-ray emission extending up to and into the ‘Fermi bubble’ region.

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ponti, G. et al. A powerful flare from Sgr A* confirms the synchrotron nature of the X-ray emission. Mon. Not. R. Astron. Soc. 468, 2447–2468 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Terrier, R. et al. An X-ray survey of the central molecular zone: variability of the Fe Kα emission line. Astron. Astrophys. 612, A102–A117 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Risaliti, G. et al. A rapidly spinning supermassive black hole at the centre of NGC 1365. Nature 494, 449–451 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kara, E. et al. A global look at X-ray time lags in Seyfert galaxies. Mon. Not. R. Astron. Soc. 462, 511–531 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Miller, J. M., Bautz, M. W. & McNamara, B. R. Chandra imaging of the outer accretion flow onto the black hole at the center of the Perseus cluster. Astrophys. J. 850, L3–L8 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Reis, R. C., Reynolds, M. T., Miller, J. M. & Walton, D. J. Reflection from the strong gravity regime in a lensed quasar at redshift z = 0.658. Nature 507, 207–209 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chartas, G. et al. Revealing the structure of an accretion disk through energy-dependent X-ray microlensing. Astrophys. J. 757, 137–148 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Mosquera, A. M. et al. The structure of the X-ray and optical emitting regions of the lensed quasar Q 2237+0305. Astrophys. J. 769, 53–60 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Blackburne, J. A., Kochanek, C. S., Chen, B., Dai, X. & Chartas, G. The optical, ultraviolet, and X-ray structure of the quasar HE 0435−1223. Astrophys. J. 789, 125–135 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Tombesi, F., Cappi, M., Reeves, J. N. & Braito, V. Evidence for ultrafast outflows in radio-quiet AGNs—III. Location and energetics. Mon. Not. R. Astron. Soc. 422, L1–L5 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Nardini, E. et al. Black hole feedback in the luminous quasar PDS 456. Science 347, 860–863 (2015). This paper presents strong evidence for feedback driven by the SMBH in a quasar.

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Parker, M. L. et al. The response of relativistic outflowing gas to the inner accretion disk of a black hole. Nature 543, 83–86 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kara, E., Miller, J. M., Reynolds, C. & Dai, L. Relativistic reverberation in the accretion flow of a tidal disruption event. Nature 535, 388–390 (2016). Reverberation mapping of Fe Kα in a TDE discovers accretion at 100 times the Eddington rate.

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Miller, J. M. et al. Flows of X-ray gas reveal the disruption of a star by a massive black hole. Nature 526, 542–545 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin, D. et al. A likely decade-long sustained tidal disruption event. Nat. Astron. 1, 0033 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Lin, D. et al. A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster. Nat. Astron. 2, 656–661 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Gierliński, M., Middleton, M., Ward, M. & Done, C. A periodicity of ~1h in X-ray emission from the active galaxy RE J1034+396. Nature 455, 369–371 (2008).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Reis, R. C. et al. A 200-second quasi-periodicity after the tidal disruption of a star by a dormant black hole. Science 337, 949–951 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pasham, D. J. et al. A loud quasi-periodic oscillation after a star is disrupted by a massive black hole. Science 363, 531–534 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Miniutti, G. et al. Nine-hour X-ray quasi-periodic eruptions from a low-mass black hole galactic nucleus. Nature 573, 381–384 (2019). Discovery of powerful (100 times) eruptions from a low-mass nuclear BH with a 9-h period.

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brandt, W. N. & Alexander, D. M. Cosmic X-ray surveys of distant active galaxies. The demographics, physics, and ecology of growing supermassive black holes. Astron. Astrophys. Rev. 23, 1–92 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Lapi, A. et al. The coevolution of supermassive black holes and massive galaxies at high redshift. Astrophys. J. 782, 69–93 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Buchner, J. et al. Obscuration-dependent evolution of active galactic nuclei. Astrophys. J. 802, 89–110 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Rangel, C. et al. Evidence for two modes of black hole accretion in massive galaxies at z2. Mon. Not. R. Astron. Soc. 440, 3630–3644 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Georgakakis, A. et al. The X-ray luminosity function of active galactic nuclei in the redshift interval z=3–5. Mon. Not. R. Astron. Soc. 453, 1946–1964 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Aird, J. et al. The evolution of the X-ray luminosity functions of unabsorbed and absorbed AGNs out to z5. Mon. Not. R. Astron. Soc. 451, 1892–1927 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Nanni, R., Vignali, C., Gilli, R., Moretti, A. & Brandt, W. N. The X-ray properties of z=6 luminous quasars. Astron. Astrophys. 603A, 128–139 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Pacucci, F., Ferrara, A., Volonteri, M. & Dubus, G. Shining in the dark: the spectral evolution of the first black holes. Mon. Not. R. Astron. Soc. 454, 3771–3777 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Chilingarian, I. V. et al. A population of bona fide intermediate-mass black holes identified as low-luminosity active galactic nuclei. Astrophys. J. 863, 1–15 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Mezcua, M., Civano, F., Fabbiano, G., Miyaji, T. & Marchesi, S. A population of intermediate-mass black holes in dwarf starburst galaxies up to redshift=1.5. Astrophys. J. 817, 20–29 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Baldassare, V. F., Reines, A. E., Gallo, E. & Greene, J. E. A 50,000 M solar mass black hole in the nucleus of RGG 118. Astrophys. J. 809, L14–L19 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Pardo, K. et al. X-ray detected active galactic nuclei in dwarf galaxies at 0 < z < 1. Astrophys. J. 831, 203–217 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Komossa, S. et al. Discovery of a binary active galactic nucleus in the ultraluminous infrared galaxy NGC 6240 using Chandra. Astrophys. J. 582, L15–L19 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Green, P. J. et al. SDSS J1254+0846: a binary quasar caught in the act of merging. Astrophys. J. 710, 1578–1588 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Ellison, S. L., Secrest, N. J., Mendel, J. T., Satyapal, S. & Simard, L. Discovery of a dual active galactic nucleus with 8 kpc separation. Mon. Not. R. Astron. Soc. 470, L49–L53 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Koss, M. et al. Chandra discovery of a binary active galactic nucleus in Mrk 739. Astrophys. J. 735, L42–L48 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Comerford, J. M., Pooley, D., Gerke, B. F. & Madejski, G. M. Chandra observations of a 1.9 kpc separation double X-ray source in a candidate dual active galactic nucleus galaxy at z = 0.16. Astrophys. J. 737, L19–L23 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Gu, L. et al. Observations of a pre-merger shock in colliding clusters of galaxies. Nat. Astron. 3, 838–843 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Forman, W. et al. Partitioning the outburst energy of a low Eddington accretion rate AGN at the center of an elliptical galaxy: the recent 12 Myr history of the supermassive black hole in M87. Astrophys. J. 844, 122–143 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Arevalo, P., Churazov, E., Zhuravleva, I., Forman, W. R. & Jones, C. On the nature of X-ray surface brightness fluctuations in M87. Astrophys. J. 818, 14–29 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Fabian, A. C. et al. A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction. Mon. Not. R. Astron. Soc. 366, 417–428 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • McNamara, B. R. & Nulsen, P. E. J. Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New J. Phys. 14, 055023–055062 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Hardcastle, M. et al. Deep Chandra observations of Pictor A. Mon. Not. R. Astron. Soc. 455, 3526–3545 (2016).

    ADS 
    Article 

    Google Scholar
     

  • McDonald, M. et al. Deep Chandra, HST-COS, and MegaCam observations of the Phoenix cluster: extreme star formation and AGN feedback on hundred kiloparsec scales. Astrophys. J. 811, 111–128 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Hlavacek-Larrondo, J. et al. X-ray cavities in a sample of 83 SPT-selected clusters of galaxies: tracing the evolution of AGN feedback in clusters of galaxies out to z=1.2. Astrophys. J. 805, 35–47 (2015). Demonstrates that AGN feedback in clusters of galaxies is a long-term (about 7 Gyr) phenomenon.

    ADS 
    Article 

    Google Scholar
     

  • Giodini, S. et al. Radio galaxy feedback in X-ray-selected groups from COSMOS: the effect on the intracluster medium. Astrophys. J. 714, 218–228 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Leauthaud, A. et al. A weak lensing study of X-ray groups in the Cosmos Survey: form and evolution of the mass–luminosity relation. Astrophys. J. 709, 97–114 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Mantz, A. B. et al. The metallicity of the intracluster medium over cosmic time: further evidence for early enrichment. Mon. Not. R. Astron. Soc. 472, 2877–2888 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Böhringer, H. & Werner, N. X-ray spectroscopy of galaxy clusters: studying astrophysical processes in the largest celestial laboratories. Astron. Astrophys. Rev. 18, 127–196 (2010).

    ADS 
    Article 

    Google Scholar
     

  • de Plaa, J. et al. CHEERS: the chemical evolution RGS sample. Astron. Astrophys. 607, 98–113 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mernier, F. et al. Radial metal abundance profiles in the intra-cluster medium of cool-core galaxy clusters, groups, and ellipticals. Astron. Astrophys. 603, 80–106 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wang, T. et al. Discovery of a galaxy cluster with a violently starbursting core at z=2.506. Astrophys. J. 828, 56–70 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Su, Y. et al. Deep Chandra observations of NGC 1404: cluster plasma physics revealed by an infalling early-type galaxy. Astrophys. J. 834, 74–82 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Eckert, D. et al. Deep Chandra observations of the stripped galaxy group falling into Abell 2142. Astron. Astrophys. 605, A25–A36 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sanders, J. et al. A very deep Chandra view of metals, sloshing and feedback in the Centaurus cluster of galaxies. Mon. Not. R. Astron. Soc. 457, 82–109 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Walker, S. A., ZuHone, J., Fabian, A. & Sanders, J. The split in the ancient cold front in the Perseus cluster. Nat. Astron. 2, 292–296 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Cen, R. & Ostriker, J. P. Where are the baryons? Astrophys. J. 514, 1–6 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Eckert, D. et al. Warm-hot baryons comprise 5–10 per cent of filaments in the cosmic web. Nature 528, 105–107 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nicastro, F. et al. Observations of the missing baryons in the warm-hot intergalactic medium. Nature 558, 406–409 (2018). These two papers (refs. 123 and 124) report significant detection of the WHIM, thought to be the location of the mission baryons.

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kovacs, O. E., Bogdan, A., Smith, R. K., Kraft, R. P. & Forman, W. R. Detection of the missing baryons toward the sightline of H1821+643. Astrophys. J. 872, 83K (2019).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Gaggero, D. et al. Searching for primordial black holes in the radio and X-ray sky. Phys. Rev. Lett. 118, 241101 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Harvey, D., Massey, R., Kitching, T., Taylor, A. & Tittley, E. The non-gravitational interactions of dark matter in colliding galaxy clusters. Science 347, 1462–1465 (2015). This study places constraints on the self-interaction cross-section of dark matter based on multiwavelength observations of interacting clusters of galaxies.

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kravtsov, A. V. & Borgani, S. Formation of galaxy clusters. Annu. Rev. Astron. Astrophys. 50, 353–409 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Mantz, A. B. et al. Cosmology and astrophysics from relaxed galaxy clusters—II. Cosmological constraints. Mon. Not. R. Astron. Soc. 440, 2077–2098 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Mantz, A. B. et al. Weighing the giants—IV. Cosmology and neutrino mass. Mon. Not. R. Astron. Soc. 446, 2205–2225 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Pierre, M. et al. The XXL Survey. I. Scientific motivations—XMM-Newton observing plan – Follow-up observations and simulation programme. Astron. Astrophys. 592, 1–15 (2016).

    Article 

    Google Scholar
     

  • Pacaud, F. et al. The XXL Survey. II. The bright cluster sample: catalogue and luminosity function. Astron. Astrophys. 592, A2–A26 (2016).

    Article 

    Google Scholar
     

  • Planck Collaboration. Planck 2015 results. XXIV. Cosmology from Sunyaev–Zeldovich cluster counts. Astron. Astrophys. 594, A24–A42 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Risaliti, G. & Lusso, E. A Hubble diagram for quasars. Astrophys. J. 815, 33–48 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Risaliti, G. & Lusso, E. Cosmological constraints from the Hubble diagram of quasars at high redshift. Nat. Astron. 3, 272–277 (2019). This study develops a tool for measuring cosmological distances at high redshift using the optical versus ultraviolet luminosity in quasars; the results suggest a deviation at high redshifts.

    ADS 
    Article 

    Google Scholar
     

  • Medvedev, P., Gilfanov, M., Sazonov, S., Schartel, N. & Sunyaev, R. XMM-Newton observations of the extremely X-ray luminous quasar CFHQS J142952+544717=SRGE J142952.1+544716 at redshift z = 6.18. Mon. Not. R. Astron. Soc. 504, 576–582 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Barcons, X. et al. Athena: ESA’s X-ray observatory for the late 2020s. Astron. J. 338, 153–158 (2017).


    Google Scholar
     

  • Lynx Team The Lynx Mission Concept Study Interim Report. Preprint at https://arxiv.org/abs/1809.09642 (2018).

  • Wilkes, B. & Tucker, W. (eds) The Chandra X-ray Observatory Exploring the High Energy Universe (IOP, 2019). A comprehensive review of Chandra and its place within astronomy and its science authored by experts in their respective fields.

  • Schwartz, D. A. et al. Chandra discovery of a 100 kiloparsec X-ray jet in PKS 0637-752. Astrophys. J. 540, 69–72 (2000).

    Article 

    Google Scholar
     

  • Tamura, T. et al. X-ray spectroscopy of the cluster of galaxies Abell 1795 with XMM-Newton. Astron. Astrophys. 365, L87–L92 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Fabian, A. C. et al. A deep Chandra observation of the Perseus cluster: shocks and ripples. Mon. Not. R. Astron. Soc. 344, L43–L47 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Igoshev, A. P., Hollerbach, R., Wood, T. & Gourgouliatos, K. N. Strong toroidal magnetic fields required by quiescent X-ray emission of magnetars. Nat. Astron. 5, 145–149 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Alston, W. N. A. et al. A dynamic black hole corona in an active galaxy through X-ray reverberation mapping. Nat. Astron. 4, 597–602 (2020). Measurements of both spin and mass for a BH with reverberation mapping.

    ADS 
    Article 

    Google Scholar
     



  • Source link