• Cummins, C. et al. A separated vortex ring underlies the flight of the dandelion. Nature 562, 414–418 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lentink, D., Dickson, W. B., van Leeuwen, J. L. & Dickinson, M. H. Leading-edge vortices elevate lift of autorotating plant seeds. Science 324, 1438–1440 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Greene, D. F. The role of abscission in long-distance seed dispersal by the wind. Ecology 86, 3105–3110 (2005).

    Article 

    Google Scholar
     

  • Greene, D. F. & Johnson, E. A. The aerodynamics of plumed seeds. Funct. Ecol. 4, 117–125 (1990).

    Article 

    Google Scholar
     

  • Sheldon, J. C. & Burrows, F. M. The dispersal effectiveness of the achene–pappus units of selected Compositae in steady winds with convection. New Phytol. 72, 665–675 (1973).

    Article 

    Google Scholar
     

  • Andersen, M. C. Diaspore morphology and seed dispersal in several wind-dispersed Asteraceae. Am. J. Bot. 80, 487–492 (1993).

    Article 

    Google Scholar
     

  • Casseau, V., De Croon, G., Izzo, D. & Pandolfi, C. Morphologic and aerodynamic considerations regarding the plumed seeds of Tragopogon pratensis and their implications for seed dispersal. PLoS ONE 10, e0125040 (2015).

    Article 

    Google Scholar
     

  • Augspurger, C. K. & Franson, S. E. Wind dispersal of artificial fruits varying in mass, area, and morphology. Ecology 68, 27–42 (1987).

    Article 

    Google Scholar
     

  • Andersen, M. C. An analysis of variability in seed settling velocities of several wind-dispersed Asteraceae. Am. J. Bot. 79, 1087–1091 (1992).

    Article 

    Google Scholar
     

  • Edwards, D. J. et al. CICADA flying circuit board unmanned aerial vehicle. In 2018 AIAA Aerospace Sciences Meeting 1008 (AIAA, 2018).

  • Pounds, P. & Singh, S. Samara: biologically inspired self-deploying sensor networks. IEEE Potentials 34, 10–14 (2015).

    Article 

    Google Scholar
     

  • Iyer, V., Kim, M., Xue, S., Wang, A. & Gollakota, S. Airdropping sensor networks from drones and insects. In MobiCom ’20: Proc. 26th Annu. Intl Conf. Mobile Computing and Networking 61 (ACM, 2020).

  • Vogel, S. Life in Moving Fluids: The Physical Biology of Flow 2nd edn (Princeton Univ. Press, 2020).

  • Seo, D. et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91, 529–539 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Kahn, J. M., Katz, R. H. & Pister, K. S. J. Next century challenges: mobile networking for “Smart Dust”. In MobiCom ’99: Proc. 5th Annu. Intl Conf. Mobile Computing and Networking (eds Kodesh, H. et al.) 271–278 (ACM, 1999).

  • Lee, Y. et al. A modular 1 mm3 die-stacked sensing platform with low power I2C inter-die communication and multi-modal energy harvesting. IEEE J. Solid-State Circ. 48, 229–243 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Chen, Y. et al. Energy-autonomous wireless communication for millimeter scale Internet-of-Things sensor nodes. IEEE J. Sel. Area Commun. 34, 3962–3977 (2016).

    Article 

    Google Scholar
     

  • Chuo, L.-X. et al. A 915 MHz asymmetric radio using Q-enhanced amplifier for a fully integrated 3 × 3 × 3 mm3 wireless sensor node with 20 m non-line-of-sight communication. In IEEE Intl Solid-State Circuits Conf. 132–133 (IEEE, 2017).

  • Iyer, V., Najafi, A., James, J., Fuller, S. & Gollakota, S. Wireless steerable vision for live insects and insect-scale robots. Sci. Robotics 5, abb0839 (2020).

    Article 

    Google Scholar
     

  • Rostami, M., Sundaresan, K., Chai, E., Rangarajan, S. & Ganesan, D. Redefining passive in backscattering with commodity devices. MobiCom ’20: Proc. 26th Annu. Intl Conf. Mobile Computing and Networking 3 (ACM, 2020).

  • Iyer, V., Nandakumar, R., Wang, A., Fuller, S. B. & Gollakota, S. Living IoT: a flying wireless platform on live insects. In MobiCom ’19: 25th Annu. Intl Conf. Mobile Computing and Networking (eds Agarwal, S. et al.) 5 (ACM, 2019).

  • Talla, V. et al. LoRa backscatter: enabling the vision of ubiquitous connectivity. In Proc. ACM Interactive, Mobile, Wearable and Ubiquitous Technologies 105 (ACM, 2017).

  • Kim, B. H. et al. Three-dimensional electronic microfliers inspired by wind-dispersed seeds. Nature 597, 503–510 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zussman, E., Yarin, A. & Weihs, D. A micro-aerodynamic decelerator based on permeable surfaces of nanofiber mats. Exp. Fluids 33, 315–320 (2002).

    Article 

    Google Scholar
     

  • Lentink, D., Dickson, W. B., van Leeuwen, J. L. & Dickinson, M. H. Leading-edge vortices elevate lift of autorotating plant seeds. Science 324, 1438–1440 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • James, J., Iyer, V., Chukewad, Y., Gollakota, S. & Fuller, S. B. Liftoff of a 190 mg laser-powered aerial vehicle: the lightest wireless robot to fly. In 2018 IEEE Intl Conf. Robotics and Automation (ICRA) (ed. Lynch, K.) 3587–3594 (IEEE, 2018).

  • Katanbaf, M., Weinand, A. & Talla, V. Simplifying backscatter deployment: full-duplex LoRa backscatter. In 18th Symp. Networked Systems Design and Implementation 955–972 (USENIX, 2021).

  • Shen, S. et al. An LC passive wireless gas sensor based on PANI/CNT composite. Sensors 18, 3022 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Nandakumar, R., Iyer, V. & Gollakota, S. 3D Localization for Sub-Centimeter Sized Devices. In SenSys ’18: Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems (eds Zhang, L. et al.) 108–119 (ACM 2018).

  • Riley, J. R. et al. Tracking bees with harmonic radar. Nature 379, 29–30 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     



  • Source link