• Theis, T. N. & Wong, H.-S. P. The end of Moore’s law: a new beginning for information technology. Comput. Sci. Eng. 19, 41–50 (2017).


    Google Scholar
     

  • Schlom, D. G., Guha, S. & Datta, S. Gate oxides beyond SiO2. MRS Bull. 33, 1017–1025 (2008).

    CAS 

    Google Scholar
     

  • Ando, T. Ultimate scaling of high-κ gate dielectrics: higher-κ or interfacial layer scavenging? Materials 5, 478–500 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salahuddin, S., Ni, K. & Datta, S. The era of hyper-scaling in electronics. Nat. Electron. 1, 442–450 (2018).


    Google Scholar
     

  • Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, H.-S. & Salahuddin, S. Memory leads the way to better computing. Nat. Nanotechnol. 10, 191–194 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Del Alamo, J. A. Nanometre-scale electronics with III–V compound semiconductors. Nature 479, 317–323 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Khan, A. I., Keshavarzi, A. & Datta, S. The future of ferroelectric field-effect transistor technology. Nat. Electron. 3, 588–597 (2020).


    Google Scholar
     

  • Dutta, S. et al. Monolithic 3D integration of high endurance multi-bit ferroelectric FET for accelerating compute-in-memory. In 2020 IEEE International Electron Devices Meeting (IEDM) 36.4.1–36.4.4 (IEEE, 2020).

  • Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Böscke, T. S., Müller, J., Bräuhaus, D., Schröder, U. & Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011).

    ADS 

    Google Scholar
     

  • Cheema, S. S. et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 580, 478–482 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, H.-J. et al. Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science 369, 1343–1347 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Noheda, B. & Iniguez, J. A key piece of the ferroelectric hafnia puzzle. Science 369, 1300–1301 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ando, T. et al. Understanding mobility mechanisms in extremely scaled HfO2 (EOT 0.42 nm) using remote interfacial layer scavenging technique and Vt-tuning dipoles with gatefirst process. In 2009 IEEE International Electron Devices Meeting (IEDM) 17.1 (IEEE, 2009).

  • Wong, H. & Iwai, H. On the scaling of subnanometer EOT gate dielectrics for ultimate nano CMOS technology. Microelectron. Eng. 138, 57–76 (2015).

    CAS 

    Google Scholar
     

  • Narasimha, S. et al. 22 nm high-performance SOI technology featuring dual-embedded stressors, Epi-Plate High-K deep-trench embedded DRAM and self-aligned via 15LM BEOL. In 2012 International Electron Devices Meeting 3.3.1–3.3.4 (IEEE, 2012).

  • Huang, J. Gate first high-k/metal gate stacks with zero SiOx interface achieving EOT=0.59 nm for 16 nm application. In 2009 Symposium on VLSI Technology 34–35 (IEEE, 2009).

  • Yeo, Y.-C., King, T.-J. & Hu, C. Direct tunneling leakage current and scalability of alternative gate dielectrics. Appl. Phys. Lett. 81, 2091–2093 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Kittel, C. Theory of antiferroelectric crystals. Phys. Rev. 82, 729–732 (1951).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Materlik, R., Künneth, C. & Kersch, A. The origin of ferroelectricity in Hf1−xZrxO2: a computational investigation and a surface energy model. J. Appl. Phys. 117, 134109 (2015).

    ADS 

    Google Scholar
     

  • Reyes-Lillo, S. E., Garrity, K. F. & Rabe, K. M. Antiferroelectricity in thin-film ZrO2 from first principles. Phys. Rev. B 90, 140103 (2014).

    ADS 

    Google Scholar
     

  • Qi, Y. & Rabe, K. M. Phase competition in HfO2 with applied electric field from first principles. Phys. Rev. B 102, 214108 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Lomenzo, P. D., Richter, C., Mikolajick, T. & Schroeder, U. Depolarization as driving force in antiferroelectric hafnia and ferroelectric wake-up. ACS Appl. Electron. Mater. 2, 1583–1595 (2020).

    CAS 

    Google Scholar
     

  • Hoffmann, M. et al. Unveiling the double-well energy landscape in a ferroelectric layer. Nature 565, 464–467 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Íñiguez, J., Zubko, P., Luk’yanchuk, I. & Cano, A. Ferroelectric negative capacitance. Nat. Rev. Mater. 4, 243–256 (2019).

    ADS 

    Google Scholar
     

  • Li, F., Zhang, S., Damjanovic, D., Chen, L.-Q. & Shrout, T. R. Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics. Adv. Funct. Mater. 28, 1801504 (2018).


    Google Scholar
     

  • Khan, A. et al. Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Appl. Phys. Lett. 99, 113501 (2011).

    ADS 

    Google Scholar
     

  • Yadav, A. K. et al. Spatially resolved steady-state negative capacitance. Nature 565, 468–471 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Das, S. et al. Local negative permittivity and topological phase transition in polar skyrmions. Nat. Mater. 20, 194–201 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Müller, J. et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 12, 4318–4323 (2012).

    ADS 
    PubMed 

    Google Scholar
     

  • Lakes, R. S., Lee, T., Bersie, A. & Wang, Y. C. Extreme damping in composite materials with negative-stiffness inclusions. Nature 410, 565–567 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaglinski, T., Kochmann, D., Stone, D. & Lakes, R. S. Composite materials with viscoelastic stiffness greater than diamond. Science 315, 620–622 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni, K. et al. Equivalent oxide thickness (EOT) scaling with hafnium zirconium oxide high-κ dielectric near morphotropic phase boundary. In 2019 IEEE International Electron Devices Meeting (IEDM) 7.4.1–7.4.4 (IEEE, 2019).

  • Budimir, M., Damjanovic, D. & Setter, N. Piezoelectric response and free-energy instability in the perovskite crystals BaTiO3, PbTiO3 and Pb(Zr, Ti)O3. Phys. Rev. B 73, 174106 (2006).

    ADS 

    Google Scholar
     

  • Noheda, B. et al. A monoclinic ferroelectric phase in the Pb(Zr1−xTix)O3 solid solution. Appl. Phys. Lett. 74, 2059–2061 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Schroeder, U. et al. Recent progress for obtaining the ferroelectric phase in hafnium oxide based films: impact of oxygen and zirconium. Jpn. J. Appl. Phys. 58, SL0801 (2019).

    CAS 

    Google Scholar
     

  • Schlom, D. G. & Haeni, J. H. A thermodynamic approach to selecting alternative gate dielectrics. MRS Bull. 27, 198–204 (2002).

    CAS 

    Google Scholar
     

  • Bersuker, G. et al. The effect of interfacial layer properties on the performance of Hf-based gate stack devices. J. Appl. Phys. 100, 094108 (2006).

    ADS 

    Google Scholar
     

  • Liao, Y.-H. et al. Electric field-induced permittivity enhancement in negative-capacitance FET. IEEE Trans. Electron Devices 68, 1346–1351 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Ragnarsson, L.-Å. et al. Ultrathin EOT high-κ/metal gate devices for future technologies: challenges, achievements and perspectives. Microelectron. Eng. 88, 1317–1322 (2011).

    CAS 

    Google Scholar
     

  • Chatterjee, K., Rosner, A. J. & Salahuddin, S. Intrinsic speed limit of negative capacitance transistors. IEEE Electron Device Lett. 38, 1328–1330 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Kwon, D. et al. Response speed of negative capacitance FinFETs. In 2018 IEEE Symposium on VLSI Technology 49–50 (IEEE, 2018).

  • Pae, S. et al. Reliability characterization of 32 nm high-K and metal-gate logic transistor technology. In 2010 IEEE International Reliability Physics Symposium 287–292 (IEEE, 2010).

  • Mukhopadhyay, S. et al. Trap generation in IL and HK layers during BTI/TDDB stress in scaled HKMG N and P MOSFETs and implications on tinv-scaling. In 2014 IEEE International Reliability Physics Symposium GD.3.1–GD.3.11 (IEEE, 2014).

  • Gao, W. et al. Room-temperature negative capacitance in a ferroelectric–dielectric superlattice heterostructure. Nano Lett. 14, 5814–5819 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zubko, P. et al. Negative capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, J. C. & Salahuddin, S. Negative capacitance transistors. Proc. IEEE 107, 49–62 (2019).

    CAS 

    Google Scholar
     

  • Hsain, H. A., Lee, Y., Parsons, G. & Jones, J. L. Compositional dependence of crystallization temperatures and phase evolution in hafnia-zirconia (HfxZr1−x)O2 thin films. Appl. Phys. Lett. 116, 192901 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Lin, B.-T., Lu, Y.-W., Shieh, J. & Chen, M.-J. Induction of ferroelectricity in nanoscale ZrO2 thin films on Pt electrode without post-annealing. J. Eur. Ceram. Soc. 37, 1135–1139 (2017).

    CAS 

    Google Scholar
     

  • Björck, M. & Andersson, G. GenX: an extensible X-ray reflectivity refinement program utilizing differential evolution. J. Appl. Crystallogr. 40, 1174–1178 (2007).


    Google Scholar
     

  • Ilavsky, J. Nika: software for two-dimensional data reduction. J. Appl. Crystallogr. 45, 324–328 (2012).

    CAS 

    Google Scholar
     

  • Park, M. H., Shimizu, T., Funakubo, H. & Schroeder, U. in Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices (eds Schroeder, U. et al.) 193–216 (Woodhead, 2019).

  • Mehmood, F., Mikolajick, T. & Schroeder, U. Lanthanum doping induced structural changes and their implications on ferroelectric properties of Hf1−xZrxO2 thin film. Appl. Phys. Lett. 117, 092902 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Mukundan, V. et al. Quantifying non-centrosymmetric orthorhombic phase fraction in 10 nm ferroelectric Hf0.5Zr0.5O2 films. Appl. Phys. Lett. 117, 262905 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Park, M. H. et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 27, 1811–1831 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Lyu, J., Fina, I., Solanas, R., Fontcuberta, J. & Sánchez, F. Growth window of ferroelectric epitaxial Hf0.5Zr0.5O2 thin films. ACS Appl. Electron. Mater. 1, 220–228 (2019).

    CAS 

    Google Scholar
     

  • Young, A. T. et al. Variable linear polarization from an X-ray undulator. J. Synchrotron Radiat. 9, 270–274 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Jain, A. et al. The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    ADS 

    Google Scholar
     

  • Mathew, K. et al. High-throughput computational X-ray absorption spectroscopy. Sci. Data 5, 180151 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, D.-Y., Jung, H.-S. & Hwang, C. S. Structural properties and electronic structure of HfO2–ZrO2 composite films. Phys. Rev. B 82, 094104 (2010).

    ADS 

    Google Scholar
     

  • Park, M. H. & Hwang, C. S. Fluorite-structure antiferroelectrics. Rep. Prog. Phys. 82, 124502 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, K. & Hu, C. MOS capacitance measurements for high-leakage thin dielectrics. IEEE Trans. Electron Devices 46, 1500–1501 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Changhwan C. et al. Fabrication of TaN-gated ultra-thin MOSFETS (EOT <1.0 nm) with HfO2 using a novel oxygen scavenging process for sub 65 nm application. In 2005 Symposium on VLSI Technology 226–227 (IEEE, 2005).

  • Takahashi, M. et al. Gate-first processed FUSI/HfO2/HfSiOx/Si MOSFETs with EOT=0.5 nm: interfacial layer formation by cycle-by-cycle deposition and annealing. In 2007 IEEE International Electron Devices Meeting (IEDM) 523–526 (IEEE, 2007).

  • Mahapatra, S. (ed.) Fundamentals of Bias Temperature Instability in MOS Transistors (Springer, 2016).

  • Kim, Y. J. et al. Time-dependent negative capacitance effects in Al2O3/BaTiO3 bilayers. Nano Lett. 16, 4375–4381 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoffmann, M. et al. Demonstration of high-speed hysteresis-free negative capacitance in ferroelectric Hf0.5Zr0.5O2. In 2018 IEEE International Electron Devices Meeting (IEDM) 31.6.1–31.6.4 (IEEE, 2018).

  • Kim, K. D. et al. Transient negative capacitance effect in atomic-layer-deposited Al2O3/Hf0.3Zr0.7O2 bilayer thin film. Adv. Funct. Mater. 29, 1808228 (2019).


    Google Scholar
     

  • Chen, L. Q. Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J. Am. Ceram. Soc. 91, 1835–1844 (2008).

    CAS 

    Google Scholar
     

  • Lomenzo, P. D. et al. A Gibbs energy view of double hysteresis in ZrO2 and Si-doped HfO2. Appl. Phys. Lett. 117, 142904 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Synopsys Sentaurus Device User Guide: Version O-2018.06 (Synopsys, 2018).

  • Park, J. Y. et al. A perspective on semiconductor devices based on fluorite-structured ferroelectrics from the materials–device integration perspective. J. Appl. Phys. 128, 240904 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Hoffmann, M., Slesazeck, S., Schroeder, U. & Mikolajick, T. What’s next for negative capacitance electronics? Nat. Electron. 3, 504–506 (2020).


    Google Scholar
     

  • Hoffmann, M., Slesazeck, S. & Mikolajick, T. Progress and future prospects of negative capacitance electronics: a materials perspective. APL Mater. 9, 020902 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Mikolajick, T. et al. Next generation ferroelectric materials for semiconductor process integration and their applications. J. Appl. Phys. 129, 100901 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Li, Y.-L. et al. Electrical and reliability characteristics of FinFETs with high-k gate stack and plasma treatments. IEEE Trans. Electron Devices 68, 4–9 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Padmanabhan, R., Mohan, S., Morozumi, Y., Kaushal, S. & Bhat, N. Performance and reliability of TiO2/ZrO2/TiO2 (TZT) and AlO-doped TZT MIM capacitors. IEEE Trans. Electron Devices 63, 3928–3935 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Shin, Y. et al. Crystallized HfLaO embedded tetragonal ZrO2 for dynamic random access memory capacitor dielectrics. Appl. Phys. Lett. 98, 173505 (2011).

    ADS 

    Google Scholar
     

  • Mise, N. et al. Scalability of TiN/HfAlO/TiN MIM DRAM capacitor to 0.7-nm-EOT and beyond. In 2009 IEEE International Electron Devices Meeting (IEDM) 11.3.1–11.3.4 (IEEE, 2009).

  • Kil, D.-S. et al. Development of new TiN/ZrO2/Al2O3/ZrO2/TiN capacitors extendable to 45nm generation DRAMs replacing HfO2 based dielectrics. In 2006 Symposium on VLSI Technology 38–39 (IEEE, 2006).

  • Kim, S. K. & Popovici, M. Future of dynamic random-access memory as main memory. MRS Bull. 43, 334–339 (2018).

    ADS 

    Google Scholar
     

  • Park, M. H. et al. A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices. Appl. Phys. Rev. 6, 041403 (2019).

    ADS 

    Google Scholar
     

  • Weeks, S. L., Pal, A., Narasimhan, V. K., Littau, K. A. & Chiang, T. Engineering of ferroelectric HfO2–ZrO2 nanolaminates. ACS Appl. Mater. Interfaces 9, 13440–13447 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Riedel, S., Polakowski, P. & Müller, J. A thermally robust and thickness independent ferroelectric phase in laminated hafnium zirconium oxide. AIP Adv. 6, 095123 (2016).

    ADS 

    Google Scholar
     

  • Osada, M. & Sasaki, T. The rise of 2D dielectrics/ferroelectrics. APL Mater. 7, 120902 (2019).

    ADS 

    Google Scholar
     

  • IRDS. Executive summary. In The International Roadmap for Devices and Systems: 2020 (IEEE, 2020); http://irds.ieee.org.

  • Park, H. W., Roh, J., Lee, Y. B. & Hwang, C. S. Modeling of negative capacitance in ferroelectric thin Ffilms. Adv. Mater. 31, 1805266 (2019).


    Google Scholar
     

  • Park, M. H. et al. Morphotropic phase boundary of Hf1−xZrxO2 thin films for dynamic random access memories. ACS Appl. Mater. Interfaces 10, 42666–42673 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Das, D. & Jeon, S. High-κ HfxZr1−xO2 ferroelectric insulator by utilizing high pressure anneal. IEEE Trans. Electron Devices 67, 2489–2494 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Kim, S. et al. Method to achieve the morphotropic phase boundary in HfxZr1−xO2 by electric field cycling for DRAM cell capacitor applications. IEEE Electron Device Lett. 42, 517–520 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Kashir, A. & Hwang, H. Ferroelectric and dielectric properties of Hf0.5Zr0.5O2 thin film near morphotropic phase boundary. Phys. Status Solidi A 218, 2000819 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Appleby, D. J. R. et al. Experimental observation of negative capacitance in ferroelectrics at room temperature. Nano Lett. 14, 3864–3868 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link