• Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C. & Davies, S. J. Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology 98, 2538–2546 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Powers, J. S. et al. A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob. Chang. Biol. 26, 3122–3133 (2020).

    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Bennett, A. C. et al. Resistance of African tropical forests to an extreme climate anomaly. Proc. Natl Acad. Sci. USA 118, e2003169118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, (2020).

  • Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Matthews, H. D. et al. An integrated approach to quantifying uncertainties in the remaining carbon budget. Commun. Earth Environ. 2, 7 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Girardin, C. A. J. et al. Nature-based solutions can help cool the planet—if we act now. Nature 593, 191–194 (2021).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Friedlingstein, P. et al. Earth Syst. Sci. Data 14, 1917–2005 (2022)


    Google Scholar
     

  • Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Lloyd, J. & Farquhar, G. D. Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Phil. Trans. R. Soc. B 363, 1811–1817 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • O’Sullivan, O. S. et al. Thermal limits of leaf metabolism across biomes. Glob. Chang. Biol. 23, 209–223 (2017).

    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Rifai, S. W., Li, S. & Malhi, Y. Coupling of El Niño events and long-term warming leads to pervasive climate extremes in the terrestrial tropics. Environ. Res. Lett. 14, 105002 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Rifai, S. W. et al. ENSO drives interannual variation of forest woody growth across the tropics. Phil. Trans. R. Soc. B 373, 20170410 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6, 1225–1230 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • McDowell, N., Allen, C. D. & Anderson‐Teixeira, K. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • Bauman, D. et al. Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits. Glob. Chang. Biol. 28, 1414–1432 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Anderegg, W. R. L., Anderegg, L. D. L., Kerr, K. L. & Trugman, A. T. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Chang. Biol. 25, 3793–3802 (2019).

    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Aguirre-Gutiérrez, J. et al. Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecol. Lett. 22, 855–865 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Aguirre-Gutiérrez, J. et al. Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat. Comm. 11, 3346 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meir, P., Mencuccini, M. & Dewar, R. C. Drought-related tree mortality: addressing the gaps in understanding and prediction. New Phytol. 207, 28–33 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • McMahon, S. M., Arellano, G. & Davies, S. J. The importance and challenges of detecting changes in forest mortality rates. Ecosphere 10, e02615 (2019).

    Article 

    Google Scholar
     

  • Trugman, A. T. et al. Tree carbon allocation explains forest drought-kill and recovery patterns. Ecol. Lett. 21, 1552–1560 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Trugman, A. T., Anderegg, L. D. L., Anderegg, W. R. L., Das, A. J. & Stephenson, N. L. Why is tree drought mortality so hard to predict? Trends Ecol. Evol. 36, 520–532 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Phillips, O. L. et al. Drought–mortality relationships for tropical forests. New Phytol. 187, 631–646 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Change 9, 384–388 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Lingenfelder, M. & Newbery, D. M. On the detection of dynamic responses in a drought-perturbed tropical rainforest in Borneo. Plant Ecol. 201, 267–290 (2009).

    Article 

    Google Scholar
     

  • McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Zuleta, D. et al. Individual tree damage dominates mortality risk factors across six tropical forests. New Phytol. 233, 705–721 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Fontes, C. G. et al. Dry and hot: the hydraulic consequences of a climate change-type drought for Amazonian trees. Phil. Trans. R. Soc. B 373, 20180209 (2018).

  • Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Peters, J. M. R. et al. Living on the edge: a continental-scale assessment of forest vulnerability to drought. Glob. Chang. Biol. 27, 3620–3641 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Yang, J., Cao, M. & Swenson, N. G. Why functional traits do not predict tree demographic rates. Trends Ecol. Evol. 33, 326–336 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Espírito-Santo, F. D. B. et al. Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nat. Commun. 5, 3434 (2014).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chambers, J. Q. et al. The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape. Proc. Natl Acad. Sci. USA 110, 3949–3954 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Rifai, S. W. et al. Landscape-scale consequences of differential tree mortality from catastrophic wind disturbance in the Amazon. Ecol. Appl. 26, 2225–2237 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • López, J., Way, D. A. & Sadok, W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Glob. Chang. Biol. 27, 1704–1720 (2021).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to droughttextendashfire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Phillips, O. L. et al. Pattern and process in Amazon tree turnover, 1976–2001. Phil. Trans. R. Soc. Lond. B 359, 381–407 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Andrus, R. A., Chai, R. K., Harvey, B. J., Rodman, K. C. & Veblen, T. T. Increasing rates of subalpine tree mortality linked to warmer and drier summers. J. Ecol. 109, 2203–2218 (2021).

    Article 

    Google Scholar
     

  • Murphy, H. T., Bradford, M. G., Dalongeville, A., Ford, A. J. & Metcalfe, D. J. No evidence for long-term increases in biomass and stem density in the tropical rain forests of Australia. J. Ecol. 101, 1589–1597 (2013).

    Article 

    Google Scholar
     

  • Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Chitra-Tarak, R. et al. Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. New Phytol. 231, 1798–1813 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Anderegg, W. R. L. et al. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc. Natl Acad. Sci. USA 113, 5024–5029 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Taylor, T. C., Smith, M. N., Slot, M. & Feeley, K. J. The capacity to emit isoprene differentiates the photosynthetic temperature responses of tropical plant species. Plant Cell Environ. 42, 2448–2457 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Arellano, G., Zuleta, D. & Davies, S. J. Tree death and damage: a standardized protocol for frequent surveys in tropical forests. J. Veg. Sci. 32, e12981 (2021).

    Article 

    Google Scholar
     

  • Bradford, M. G., Murphy, H. T., Ford, A. J., Hogan, D. L. & Metcalfe, D. J. Long-term stem inventory data from tropical rain forest plots in Australia. Ecology 95, 2362 (2014).

    Article 

    Google Scholar
     

  • Johnson, D. J. et al. Climate sensitive size-dependent survival in tropical trees. Nat. Ecol. Evol. 2, 1436–1442 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Needham, J., Merow, C., Chang-Yang, C.-H., Caswell, H. & McMahon, S. M. Inferring forest fate from demographic data: from vital rates to population dynamic models. Proc. Biol. Sci. 285, 20172050 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis, S. L. et al. Tropical forest tree mortality, recruitment and turnover rates: calculation, interpretation and comparison when census intervals vary. J. Ecol. 92, 929–944 (2004).

    Article 

    Google Scholar
     

  • Reeves, J., Chen, J., Wang, X. L., Lund, R. & Lu, Q. Q. A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteorol. Climatol. 46, 900–915 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Clark, J. S., Bell, D. M., Kwit, M. C. & Zhu, K. Competition-interaction landscapes for the joint response of forests to climate change. Glob. Chang. Biol. 20, 1979–1991 (2014).

    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Oliva, J., Stenlid, J. & Martínez-Vilalta, J. The effect of fungal pathogens on the water and carbon economy of trees: implications for drought-induced mortality. New Phytol. 203, 1028–1035 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Franklin, J. F., Shugart, H. H. & Harmon, M. E. Tree death as an ecological process. Bioscience 37, 550–556 (1987).

    Article 

    Google Scholar
     

  • Yanoviak, S. P. et al. Lightning is a major cause of large tree mortality in a lowland neotropical forest. New Phytol. 225, 1936–1944 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Preisler, Y., Tatarinov, F., Grünzweig, J. M. & Yakir, D. Seeking the ‘point of no return’ in the sequence of events leading to mortality of mature trees. Plant Cell Environ. 44, 1315–1328 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Aragão, L. E. O. C. et al. Spatial patterns and fire response of recent Amazonian droughts. Geophys. Res. Lett. 34, L07701 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Malhi, Y. et al. The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests. Glob. Chang. Biol. 21, 2283–2295 (2015).

    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Hutchinson, M. F., Xu, T., Kesteven, J. L., Marang, I. J. & Evans, B. J.ANUClimate v2.0, NCI Australia. https://doi.org/10.25914/60a10aa56dd1b (2021).

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Carscadden, K. A. et al. Niche breadth: causes and consequences for ecology, evolution, and conservation. Q. Rev. Biol. 95, 179–214 (2020).

    Article 

    Google Scholar
     

  • Swenson, N. G. et al. A reframing of trait–demographic rate analyses for ecology and evolutionary biology. Int. J. Plant Sci. 181, 33–43 (2020).

    Article 

    Google Scholar
     

  • Morueta-Holme, N. et al. Habitat area and climate stability determine geographical variation in plant species range sizes. Ecol. Lett. 16, 1446–1454 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brum, M. et al. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. J. Ecol. 107, 318–333 (2019).

    Article 

    Google Scholar
     

  • Chitra-Tarak, R. et al. The roots of the drought: hydrology and water uptake strategies mediate forest-wide demographic response to precipitation. J. Ecol. 106, 1495–1507 (2018).

    Article 

    Google Scholar
     

  • Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Modell. 275, 73–77 (2014).

    Article 

    Google Scholar
     

  • Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Duursma, R. A. Plantecophys—an R package for analysing and modelling leaf gas exchange data. PLoS ONE 10, e0143346 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • De Kauwe, M. G. et al. A test of the ‘one-point method’ for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. New Phytol. 210, 1130–1144 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Bloomfield, K. J. et al. The validity of optimal leaf traits modelled on environmental conditions. New Phytol. 221, 1409–1423 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and STAN (CRC Press, 2020).

  • “RStan: the R interface to Stan.” R package version 2.21.2. http://mc-stan.org/ (Stan Development Team, 2020).

  • Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article 

    Google Scholar
     

  • R Core Team. R: a language and environment for statistical computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2021).

  • Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     



  • Source link