• Hinkel, J. et al. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl Acad. Sci. USA 111, 3292–3297 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, K., Douglas, B. C. & Leatherman, S. P. Twentieth-century storm activity along the U.S. East Coast. J. Clim. 13, 1748–1761 (2000).

    ADS 

    Google Scholar
     

  • Woodworth, P. L. & Blackman, D. L. Evidence for systematic changes in extreme high waters since the mid-1970s. J. Clim. 17, 1190–1197 (2004).

    ADS 

    Google Scholar
     

  • Marcos, M., Tsimplis, M. N. & Shaw, A. G. P. Sea level extremes in southern Europe. J. Geophys. Res. Oceans 114, C01007 (2009).

    ADS 

    Google Scholar
     

  • Haigh, I., Nicholls, R. & Wells, N. Assessing changes in extreme sea levels: application to the English Channel, 1900–2006. Cont. Shelf Res. 30, 1042–1055 (2010).

    ADS 

    Google Scholar
     

  • Menéndez, M. & Woodworth, P. L. Changes in extreme high water levels based on a quasi-global tide-gauge data set. J. Geophys. Res. 115, C10011 (2010).

    ADS 

    Google Scholar
     

  • Weisse, R. et al. Changing extreme sea levels along European coasts. Coastal Eng. 87, 4–14 (2014).


    Google Scholar
     

  • Wahl, T. & Chambers, D. P. Evidence for multidecadal variability in US extreme sea level records. J. Geophys. Res. Oceans 120, 1527–1544 (2015).

    ADS 

    Google Scholar
     

  • Marcos, M. & Woodworth, P. L. Spatiotemporal changes in extreme sea levels along the coasts of the North Atlantic and the Gulf of Mexico. J. Geophys. Res. Oceans 122, 7031–7048 (2017).

    ADS 

    Google Scholar
     

  • Rohmer, J. & Le Cozannet, G. Dominance of the mean sea level in the high-percentile sea levels time evolution with respect to large-scale climate variability: a Bayesian statistical approach. Environ. Res. Lett. 14, 014008 (2019).

    ADS 

    Google Scholar
     

  • Seneviratne, S. I. et al. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 109–230 (Cambridge Univ. Press, 2012).

  • Intergovernmental Panel on Climate Change in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • Calafat, F. M. & Marcos, M. Probabilistic reanalysis of storm surge extremes in Europe. Proc. Natl Acad. Sci. USA 117, 1877–1883 (2020).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Luxford, F. & Faulkner, D. Recommendations for future research and practice on non-stationarity in UK flooding. FRS18087/REA/R2. Environment Agency https://assets.publishing.service.gov.uk/media/6038f813e90e07055685020c/Recommendations_for_future_research_and_practice_on_non-stationarity_in_UK_flooding_-_report__2_.pdf (2020).

  • Jevrejeva, S., Jackson, L. P., Grinsted, A., Lincke, D. & Marzeion, B. Flood damage costs under the sea level rise with warming of 1.5 °C and 2.0 °C. Environ. Res. Lett. 13, 074014 (2018).

    ADS 

    Google Scholar
     

  • Kulp, S. A. & Strauss, B. H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 10, 4844 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tiggeloven, T. et al. Global-scale benefit–cost analysis of coastal flood adaptation to different flood risk drivers using structural measures. Nat. Hazards Earth Syst. Sci. 20, 1025–1044 (2020).

    ADS 

    Google Scholar
     

  • Church, J. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch. 13, 1137–1216 (Cambridge Univ. Press, 2013).

  • Frederikse, T. et al. The causes of sea-level rise since 1900. Nature 584, 393–397 (2020).

    CAS 

    Google Scholar
     

  • Marcos, M., Jordà, G., Gomis, D. & Pérez, B. Changes in storm surges in southern Europe from a regional model under climate change scenarios. Glob. Planet. Change 77, 116–128 (2011).

    ADS 

    Google Scholar
     

  • Conte, D. & Lionello, P. Characteristics of large positive and negative surges in the Mediterranean Sea and their attenuation in future climate scenarios. Glob. Planet. Change 111, 159–173 (2013).

    ADS 

    Google Scholar
     

  • Little, C. M. et al. Joint projections of US East Coast sea level and storm surge. Nat. Clim. Change 5, 1114–1120 (2015).

    ADS 

    Google Scholar
     

  • Vousdoukas, M. I. et al. Projections of extreme storm surge levels along Europe. Clim. Dyn. 47, 3171–3190 (2016).


    Google Scholar
     

  • Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M. & Feyen, L. Extreme sea levels on the rise along Europe’s coasts. Earths Future 5, 304–323 (2017).

    ADS 

    Google Scholar
     

  • Howard, T., Palmer, M. D. & Bricheno, L. M. Contributions to 21st century projections of extreme sea-level change around the UK. Environ. Res. Commun 1, 095002 (2019).


    Google Scholar
     

  • Muis, S. et al. A high-resolution global dataset of extreme sea levels, tides, and storm surges, including future projections. Front. Mar. Sci. 7, 263 (2020).


    Google Scholar
     

  • Greenland, S. et al. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur. J. Epidemiol 31, 337–350 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Button, K. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).

    CAS 

    Google Scholar
     

  • Coles, S. G. An Introduction to Statistical Modelling of Extreme Values 208 pp (Springer, 2001).

  • Schlather, M. Models for stationary max-stable random fields. Extremes 5, 33–44 (2002).

    MathSciNet 
    MATH 

    Google Scholar
     

  • McFadden, D. Modeling the choice of residential location. Transp. Res. Rec. 672, 72–77 (1978).


    Google Scholar
     

  • Tadesse, M. G., Wahl, T. & Cid, A. Data-driven modeling of global storm surges. Front. Mar. Sci. 7, 260 (2020).


    Google Scholar
     

  • Tadesse, M. G. & Wahl, T. A database of global storm surge reconstructions. Sci. Data 8, 125 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guillod, B. P. et al. A large set of potential past, present and future hydro-meteorological time series for the UK. Hydrol. Earth Syst. Sci. 22, 611–634 (2018).

    ADS 

    Google Scholar
     

  • Stott, P. A. et al. Attribution of extreme weather and climate-related events. Wiley Interdiscip. Rev. Clim. Change 7, 23–41 (2016).


    Google Scholar
     

  • Dangendorf, S., Arns, A., Pinto, J. G., Ludwig, P. & Jensen, J. The exceptional influence of storm ‘Xaver’ on design water levels in the German Bight. Environ. Res. Lett. 11, 054001 (2016).

    ADS 

    Google Scholar
     

  • Zappa, G., Shaffrey, L. C., Hodges, K. I., Sansom, P. G. & Stephenson, D. B. A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. J. Clim. 26, 5846–5862 (2013).

    ADS 

    Google Scholar
     

  • Feser, F. et al. Storminess over the North Atlantic and northwestern Europe—a review. Q. J. R. Meteorol. Soc 141, 350–382 (2015).

    ADS 

    Google Scholar
     

  • Barcikowska, M. J. et al. Euro-Atlantic winter storminess and precipitation extremes under 1.5 °C vs. 2 °C warming scenarios. Earth Syst. Dyn 9, 679–699 (2018).

    ADS 

    Google Scholar
     

  • Vousdoukas, M. I. et al. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 9, 2360 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodworth, P. L. et al. Towards a global higher-frequency sea level dataset. Geosci. Data J. 3, 50–59 (2017).

    ADS 

    Google Scholar
     

  • Killick, R., Fearnhead, P. & Eckley, I. A. Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107, 1590–1598 (2012).

    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Kalnay, et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–470 (1996).

    ADS 

    Google Scholar
     

  • Holgate, S. J. et al. New data systems and products at the Permanent Service for Mean Sea Level. J. Coast. Res. 29, 493–504 (2013).


    Google Scholar
     

  • Reich, B. J. & Shaby, B. A. A hierarchical max-stable spatial model for extreme precipitation. Ann. Appl. Stat 6, 1430–1451 (2012).

    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Stephenson, A. G., Shaby, B. A., Reich, B. J. & Sullivan, A. L. Estimating spatially varying severity thresholds of a forest fire danger rating system using max-stable extreme-event modeling. J. Appl. Meteorol. Climatol. 54, 395–407 (2015).

    ADS 

    Google Scholar
     

  • Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).


    Google Scholar
     

  • Guillod, B. P. et al. weather@home 2: validation of an improved global–regional climate modelling system. Geosci. Model Dev. 10, 1849–1872 (2017).

    ADS 

    Google Scholar
     

  • Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

    ADS 

    Google Scholar
     

  • Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    ADS 

    Google Scholar
     

  • Hersbach, et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    ADS 

    Google Scholar
     



  • Source link