• Mallapaty, S. How China could be carbon neutral by mid-century. Nature 586, 482–483 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wang, J. et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature 586, 720–723 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jiang, F. et al. A comprehensive estimate of recent carbon sinks in China using both top-down and bottom-up approaches. Sci. Rep. 6, 22130 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Piao, S. et al. The carbon balance of terrestrial ecosystems in China. Nature 458, 1009–1013 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Fang, J., Yu, G., Liu, L., Hu, S. & Chapin, F. S. Climate change, human impacts, and carbon sequestration in China. Proc. Natl Acad. Sci. USA 115, 4015–4020 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Ji, Y. et al. Variation of net primary productivity and its drivers in China’s forests during 2000–2018. For. Ecosyst. 7, 15 (2020).

    Article 

    Google Scholar
     

  • Chapin, F. S., Matson, P. A. & Vitousek, P. M. in Principles of Terrestrial Ecosystem Ecology (eds Chapin, F. S. et al.) 183–228 (Springer, 2011).

  • Prentice, I. C. et al. In Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) 183–237 (IPCC, Cambridge Univ. Press, 2001).

  • Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tian, H. et al. China’s terrestrial carbon balance: contributions from multiple global change factors. Global Biogeochem. Cycles 25, GB1007 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Ciais, P. et al. Empirical estimates of regional carbon budgets imply reduced global soil heterotrophic respiration. Natl Sci. Rev. 8, nwaa145 (2020).

    Article 

    Google Scholar
     

  • Agustí-Panareda, A. et al. Modelling CO2 weather – why horizontal resolution matters. Atmos. Chem. Phys. 19, 7347–7376 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Wang, Y. et al. Estimation of observation errors for large-scale atmospheric inversion of CO2 emissions from fossil fuel combustion. Tellus B Chem. Phys. Meteorol. 69, 1325723 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Chevallier, F. Validation Report for the Inverted CO2 Fluxes, v18r1–version 1.0, https://atmosphere.copernicus.eu/sites/default/files/2019-01/CAMS73_2018SC1_D73.1.4.1-2017-v0_201812_v1_final.pdf (European Centre for Medium-Range Weather Forecasts (ECMWF), 2018).

  • Canadell, J. et al. (eds) Regional Carbon Cycle Assessment and Processes (RECCAP) Biogeosciences https://bg.copernicus.org/articles/special_issue107.html (2012–2015).



  • Source link