• Vavilov, N. I. in Origin and Geography of Cultivated Plants (ed. Dorofeyev, V. F.) 22–135 (Cambridge Univ. Press, 1992).

  • Malzew, A. I. Wild and Cultivated Oats, Sectio Euavena Griseb. (Publ. of the All-Union Inst. of Appl. Botany and New Cultures under the Council of People’s Commissars of the USSR, 1930).

  • EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on the substantiation of a health claim related to oat β-glucan and lowering blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) no. 1924/2006. EFSA J. https://doi.org/10.2903/j.efsa.2010.1885 (2010).

  • EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on the substantiation of health claims related to β-glucans from oats and barley and maintenance of normal blood LDL-cholesterol concentrations (ID 1236, 1299), increase in satiety leading to a reduction in energy intake (ID 851, 852), reduction of post-prandial glycaemic responses (ID 821, 824), and ‘digestive function’ (ID 850) pursuant to Article 13(1) of Regulation (EC) no. 1924/2006). EFSA J. https://doi.org/10.2903/j.efsa.2011.2207 (2011).

  • Mathews, R., Kamil, A. & Chu, Y. Global review of heart health claims for oat β-glucan products. Nutr. Rev. 78, 78–97 (2020).

    PubMed 

    Google Scholar
     

  • Manni, M., Berkeley, M. R., Seppey, M. & Zdobnov, E. M. BUSCO: assessing genomic data quality and beyond. Curr. Protoc. 1, e323 (2021).

    PubMed 

    Google Scholar
     

  • International Wheat Genome Sequencing Consortium (IWGSC). et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191 (2018).


    Google Scholar
     

  • Monat, C. et al. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 20, 284 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rabanus-Wallace, M. T. et al. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat. Genet. 53, 564–573 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bekele, W. A., Wight, C. P., Chao, S., Howarth, C. J. & Tinker, N. A. Haplotype-based genotyping-by-sequencing in oat genome research. Plant Biotechnol. J. 16, 1452–1463 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • GrainGenes: a database for Triticeae and Avena, Avena sativa, OT3098 v2, PepsiCo, https://wheat.pw.usda.gov/jb?data=/ggds/oat-ot3098v2-pepsico (accessed 15 January 2022).

  • Ladizinsky, G. A new species of Avena from Sicily, possibly the tetraploid progenitor of hexaploid oats. Genet. Resour. Crop Evol. 45, 263–269 (1998).


    Google Scholar
     

  • Sanz, M. J. et al. A new chromosome nomenclature system for oat (Avena sativa L. and A. byzantina C. Koch) based on FISH analysis of monosomic lines. Theor. Appl. Genet. 121, 1541–1552 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Maughan, P. J. et al. Genomic insights from the first chromosome-scale assemblies of oat (Avena spp.) diploid species. BMC Biol. 17, 92 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nomenclature Database, National Oat Conference Newsletter, https://oatnews.org/nomenclature (accessed 8 March 2021).

  • Mascher, M. et al. Long-read sequence assembly: a technical evaluation in barley. Plant Cell 33, 1888–1906 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mascher, M. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaffin, A. S. et al. A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial subgenome rearrangement. Plant Genome https://doi.org/10.3835/plantgenome2015.10.0102 (2016).

  • Yan, H. et al. High-density marker profiling confirms ancestral genomes of Avena species and identifies D-genome chromosomes of hexaploid oat. Theor. Appl. Genet. 129, 2133–2149 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santos, A. G., Livingston, D. P., Jellen, E. N., Wooten, D. R. & Murphy, J. P. A cytological marker associated with winterhardiness in oat. Crop Sci. 46, 203–208 (2006).


    Google Scholar
     

  • Tinker, N. A. et al. Genome analysis in Avena sativa reveals hidden breeding barriers and opportunities for oat improvement. Commun. Biol. https://doi.org/10.1038/s42003-022-03256-5 (2022).

  • Alabdullah, A. K., Moore, G. & Martín, A. C. A duplicated copy of the meiotic gene ZIP4 preserves up to 50% pollen viability and grain number in polyploid wheat. Biology 10, 290 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffiths, S. et al. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439, 749–752 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rey, M.-D. et al. Exploiting the ZIP4 homologue within the wheat Ph1 locus has identified two lines exhibiting homoeologous crossover in wheat–wild relative hybrids. Mol. Breed. 37, 95 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moskal, K., Kowalik, S., Podyma, W., Łapiński, B. & Boczkowska, M. The pros and cons of rye chromatin introgression into wheat genome. Agronomy 11, 456 (2021).

    CAS 

    Google Scholar
     

  • Dilkova, M., Jellen, E. N. & Forsberg, R. A. C-banded karyotypes and meiotic abnormalities in germplasm derived from interploidy crosses in Avena. Euphytica 111, 175–184 (2000).


    Google Scholar
     

  • Otto, S. P. The evolutionary consequences of polyploidy. Cell 131, 452–462 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Jiao, Y. & Paterson, A. H. Polyploidy-associated genome modifications during land plant evolution. Philos. Trans. R. Soc. Lond. B 369, 20130355 (2014).


    Google Scholar
     

  • Grover, C. E. et al. Homoeolog expression bias and expression level dominance in allopolyploids. New Phytol. 196, 966–971 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • van de Peer, Y., Mizrachi, E. & Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424 (2017).

    PubMed 

    Google Scholar
     

  • Ramírez-González, R. H. et al. The transcriptional landscape of polyploid wheat. Science 361, eaar6089 (2018).

    PubMed 

    Google Scholar
     

  • Garcia-Gimenez, G. et al. Targeted mutation of barley (1,3;1,4)-β-glucan synthases reveals complex relationships between the storage and cell wall polysaccharide content. Plant J. 104, 1009–1022 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Nemeth, C. et al. Down-regulation of the CSLF6 gene results in decreased (1,3;1,4)-β-d-glucan in endosperm of wheat. Plant Physiol. 152, 1209–1218 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong, S. C. et al. Differential expression of the HvCslF6 gene late in grain development may explain quantitative differences in (1,3;1,4)-β-glucan concentration in barley. Mol. Breed. 35, 20 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto-Sánchez, M. I. et al. Safety of adding oats to a gluten-free diet for patients with celiac disease: systematic review and meta-analysis of clinical and observational studies. Gastroenterology 153, 395–409 (2017).

    PubMed 

    Google Scholar
     

  • Vinje, M. A., Walling, J. G., Henson, C. A. & Duke, S. H. Comparative gene expression analysis of the β-amylase and hordein gene families in the developing barley grain. Gene 693, 127–136 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Juhász, A. et al. Genome mapping of seed-borne allergens and immunoresponsive proteins in wheat. Sci. Adv. 4, eaar8602 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Genome-, transcriptome- and proteome-wide analyses of the gliadin gene families in Triticum urartu. PLoS ONE 10, e0131559 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huo, N. et al. Dynamic evolution of α-gliadin prolamin gene family in homeologous genomes of hexaploid wheat. Sci. Rep. 8, 5181 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shewry, P. R. & Halford, N. G. Cereal seed storage proteins: structures, properties and role in grain utilization. J. Exp. Bot. 53, 947–958 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Black, M. & Derek Bewley, J. Seed Technology and Its Biological Basis (CRC Press, 2000).

  • Sollid, L. M. et al. Update 2020: nomenclature and listing of celiac disease-relevant gluten epitopes recognized by CD4+ T cells. Immunogenetics 72, 85–88 (2020).

    PubMed 

    Google Scholar
     

  • Hardy, M. Y. et al. Ingestion of oats and barley in patients with celiac disease mobilizes cross-reactive T cells activated by avenin peptides and immuno-dominant hordein peptides. J. Autoimmun. 56, 56–65 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Adamski, N. M. et al. A roadmap for gene functional characterisation in crops with large genomes: lessons from polyploid wheat. eLife 9, e55646 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chawade, A. et al. Development and characterization of an oat TILLING-population and identification of mutations in lignin and β-glucan biosynthesis genes. BMC Plant Biol. 10, 86 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • von Wettstein-Knowles, P. Ecophysiology with barley eceriferum (cer) mutants: the effects of humidity and wax crystal structure on yield and vegetative parameters. Ann. Bot. 126, 301–313 (2020).


    Google Scholar
     

  • Wang, X., Kong, L., Zhi, P. & Chang, C. Update on cuticular wax biosynthesis and its roles in plant disease resistance. Int. J. Mol. Sci. 21, 5514 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • von Wettstein-Knowles, P. The polyketide components of waxes and the Cer-cqu gene cluster encoding a novel polyketide synthase, the β-diketone synthase, DKS. Plants 6, 28 (2017).


    Google Scholar
     

  • Schneider, L. M. et al. The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes. J. Exp. Bot. 67, 2715–2730 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hen-Avivi, S. et al. A metabolic gene cluster in the wheat W1 and the barley Cer-cqu loci determines β-diketone biosynthesis and glaucousness. Plant Cell 28, 1440–1460 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tinker, N. A. et al. A SNP genotyping array for hexaploid oat. Plant Genome 7, 1–8 (2014).


    Google Scholar
     

  • Bandi, V. & Gutwin, C. Interactive exploration of genomic conservation. In Proceedings of the 46th Graphics Interface Conference 2020 (GI’20) https://synvisio.github.io (2020).

  • Mascher, M. et al. Pseudomolecules and annotation of the third version of the reference genome sequence assembly of barley cv. Morex [Morex V3]. e!DAL Plant Genomics and Phenomics Research Data Repository (PGP) https://doi.org/10.5447/ipk/2021/3 (accessed 3 December 2020).

  • Blake, V. C. et al. GrainGenes: centralized small grain resources and digital platform for geneticists and breeders. Database 2019, baz065 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link