• IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press 2013).

  • Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2013).

  • Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).

    ADS 

    Google Scholar
     

  • Billen, G., Lancelot, C. & Meybeck, M. in Ocean Margin Processes in Global Change: Report of the Dahlem Workshop on Ocean Margin Processes in Global Change (eds Mantoura, R. F. C. et al.) 19–44 (Wiley, 1991).

  • Ludwig, W., Probst, J. L. & Kempe, S. Predicting the oceanic input of organic carbon by continental erosion. Glob. Biogeochem. Cycles 10, 23–41 (1996).

    CAS 
    ADS 

    Google Scholar
     

  • Mackenzie, F. T., De Carlo, E. H. & Lerman, A. in Treatise on Estuarine and Coastal Science (eds Middelburg, J. J. & Laane, R.) Ch. 5.10 (Elsevier, 2012).

  • Meybeck, M. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 282, 401–450 (1982).

    CAS 
    ADS 

    Google Scholar
     

  • Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013). A study quantifying the anthropogenic perturbation of the LOAC carbon fluxes, highlighting the need to include the LOAC in anthropogenic carbon budgets.

    CAS 
    ADS 

    Google Scholar
     

  • Battin, T. J. et al. The boundless carbon cycle. Nat. Geosci. 2, 598–600 (2009).

    CAS 
    ADS 

    Google Scholar
     

  • Borges, A. V., Dellile, B. & Frankignoulle, M. Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts. Geophys. Res. Lett. 32, L14601 (2005).

    ADS 

    Google Scholar
     

  • Cai, W.-J., Dai, M. & Wang, Y. Air–sea exchange of carbon dioxide in ocean margins: a province-based synthesis. Geophys. Res. Lett. 33, L12603 (2006).

    ADS 

    Google Scholar
     

  • Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 171–184 (2007). Pioneering study highlighting the much larger inland water carbon fluxes and the need to revise the ‘river pipeline’ model.

    CAS 

    Google Scholar
     

  • Mulholland, P. J. & Elwood, J. W. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus 34, 490–499 (1982).

    CAS 
    ADS 

    Google Scholar
     

  • Richey, J. E. in The Global Carbon Cycle, Integrating Humans, Climate, and the Natural World Vol. 17 (eds Field, C. B. & Raupach, M. R.) 329–340 (Island Press, 2004).

  • Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314 (2009).

    CAS 
    ADS 

    Google Scholar
     

  • Wollast, R. & Mackenzie, F. T. in Climate and Geo-Sciences (eds Berger, A. et al.) 453–473 (Kluwer Academic Publishers, 1989).

  • Mackenzie, F. T., Andersson, A. J., Lerman, A. & Ver, L. M. in The Sea Vol. 13 (eds Robinson, A. R. & Brink, K. H.) 193–225 (Harvard Univ. Press, 2005). A landmark study revealing the quantitative significance of the LOAC for the global carbon budget.

  • Ciais, P. et al. Current systematic carbon‐cycle observations and the need for implementing a policy‐relevant carbon observing system. Biogeosciences 11, 3547–3602 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013). A spatially resolved assessment of CO2 emissions from the global inland water network, revealing the very efficient carbon turnover between terrestrial and freshwater ecosystems.

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Bauer, J. E. et al. The changing carbon cycle of the coastal ocean. Nature 504, 61–70 (2013).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Sarmiento, J. L. & Sundquist, E. T. Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356, 589–593 (1992). A study quantifying the pre-industrial land-to-ocean carbon transfers and the resulting open-ocean outgassing.

    CAS 
    ADS 

    Google Scholar
     

  • Amiotte-Suchet, P. & Probst, J.-L. A global model for present day atmospheric/soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2). Tellus B 47, 273–280 (1995).

    ADS 

    Google Scholar
     

  • Jacobson, A. R., Fletcher, S. E. M., Gruber, N., Sarmiento, J. L. & Gloor, M. A joint atmosphere–ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global-scale fluxes. Glob. Biogeochem. Cycles 21, GB1019 (2007).

    ADS 

    Google Scholar
     

  • Resplandy, L. et al. Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport. Nat. Geosci. 11, 504–509 (2018). A recent study advocating for an upward revision of the pre-industrial riverine and oceanic carbon transports, suggesting a tighter connection between the land and ocean carbon cycles.

    CAS 
    ADS 

    Google Scholar
     

  • Le Quéré, C. et al. Global carbon budget 2017. Earth Syst. Sci. Data 10, 405–448 (2018a).

    ADS 

    Google Scholar
     

  • Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018b).

    ADS 

    Google Scholar
     

  • Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).

    ADS 

    Google Scholar
     

  • Galy, V., Peucker-Ehrenbrink, B. & Eglinton, T. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521, 204–207 (2015).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Lacroix, F., Ilyina, T. & Hartmann, J. Oceanic CO2 outgassing and biological production hotspots induced by pre-industrial river loads of nutrients and carbon in a global modelling approach. Biogeosciences 17, 55–88 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • Li, M. et al. The carbon flux of global rivers: a re‐evaluation of amount and spatial patterns. Ecol. Indic. 80, 40–51 (2017).

    CAS 

    Google Scholar
     

  • Li, M. et al. Modeling global riverine DOC flux dynamics from 1951 to 2015. J. Adv. Model. Earth Syst. 11, 514–530 (2019).

    ADS 

    Google Scholar
     

  • Luijendijk, E., Gleeson, T. & Moosdorf, N. Fresh groundwater discharge insignificant for the world’s oceans but important for coastal ecosystems. Nat. Commun. 11, 1260 (2020). A global, spatially resolved quantitative assessment of carbon fluxes through the subsurface, suggesting a relatively minor contribution of the fresh groundwater pathway to the land–ocean exchanges.

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Wagner, S. et al. Soothsaying DOM: a current perspective on the future of oceanic dissolved organic carbon. Front. Marine Sci. 7, 341 (2019).

    ADS 

    Google Scholar
     

  • Duarte, C. M. Reviews and syntheses: hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeosciences 14, 301–310 (2017).

    CAS 
    ADS 

    Google Scholar
     

  • Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).

    CAS 
    ADS 

    Google Scholar
     

  • Laruelle, G. G. et al. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol. Earth Syst. Sci. 17, 2029–2051 (2013).

    ADS 

    Google Scholar
     

  • Roobaert, A. et al. The spatiotemporal dynamics of the sources and sinks of CO2 in the global coastal ocean. Glob. Biogeochem. Cycles 33, 1693–1714 (2019).

    CAS 
    ADS 

    Google Scholar
     

  • Windham-Myers, L. et al. in Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report (eds Cavallaro, N. et al.) Ch. 15 (US Global Change Research Program, 2018).

  • Bourgeois, T. et al. Coastal-ocean uptake of anthropogenic carbon. Biogeosciences 13, 4167–4185 (2016). A study quantifying the anthropogenic perturbation of CO2 uptake by continental shelf waters, suggesting a small pre-industrial sink as further corroborated by the recent work by ref. 55.

    CAS 
    ADS 

    Google Scholar
     

  • Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. & Lynch, J. C. Global carbon sequestration in tidal, saline wetland soils. Glob. Biogeochem. Cycles 17, 1111 (2003).

    ADS 

    Google Scholar
     

  • Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8 (2005). Pioneering study highlighting the quantitative role of coastal vegetation in the fixation, burial and lateral carbon exports to the open ocean and their anthropogenic perturbation.

    CAS 
    ADS 

    Google Scholar
     

  • LaRowe, D. E. et al. Organic carbon and microbial activity in marine sediments on a global scale throughout the quaternary. Geochim. Cosmochim. Acta 286, 227–247 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • Smith, R. W., Bianchi, T. S., Allison, M., Savage, C. & Galy, V. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8, 450–453 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • O’Mara, N. & Dunne, J. Hot spots of carbon and alkalinity cycling in the coastal oceans. Sci. Rep. 9, 4434 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Ouyang, X. & Lee, S. Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences 11, 5057–5071 (2014).

    ADS 

    Google Scholar
     

  • Holgerson, M. A. & Raymond, P. A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9, 222–226 (2016).

    CAS 
    ADS 

    Google Scholar
     

  • Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P. & Regnier, P. A. G. Spatial patterns in CO2 evasion from the global river network. Glob. Biogeochem. Cycles 29, 534–554 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • Marx, A. et al. A review of CO2 and associated carbon dynamics in headwater streams: a global perspective. Rev. Geophys. 55, 560–585 (2017).

    ADS 

    Google Scholar
     

  • Mendonça, R. et al. Organic carbon burial in global lakes and reservoirs. Nat. Commun. 8, 1694 (2017). A study proposing a significant downward revision of the global inland water carbon burial, corroborating the model results on the anthropogenic perturbation by ref. 52.

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Lauerwald, R., Regnier, P., Guenet, B., Friedlingstein, P. & Ciais, P. How simulations of the land carbon sink are biased by ignoring fluvial carbon transfers: a case study for the Amazon Basin. One Earth 3, 226–236 (2020).

    ADS 

    Google Scholar
     

  • Lapierre, J.-F., Guillemette, F., Berggren, M. & del Giorgio, P. A. Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems. Nat. Commun. 4, 2972 (2013).

    PubMed 
    ADS 

    Google Scholar
     

  • Maavara, T., Lauerwald, R., Regnier, P. & Van Cappellen, P. Global perturbation of organic carbon cycling by river damming. Nat. Commun. 8, 15347 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Andersson, A. J., MacKenzie, F. T. & Lerman, A. Coastal ocean and carbonate systems in the high CO2 world of the anthropocene. Am. J. Sci. 305, 875–918 (2005).

    CAS 
    ADS 

    Google Scholar
     

  • Hastie, A., Lauerwald, R., Ciais, P., Papa, F. & Regnier, P. Historical and future contributions of inland waters to the Congo Basin carbon balance. Earth Syst. Dyn. 12, 37–62 (2021).

    ADS 

    Google Scholar
     

  • Lacroix, F., Ilyina, T., Laruelle, G. G., & Regnier, P. Reconstructing the preindustrial coastal carbon cycle through a global ocean circulation model: was the global continental shelf already both autotrophic anda CO2 sink? Glob. Biogeochem. Cycles 35, e2020GB006603 (2021)

  • Landschützer, P., Gruber, N., Bakker, D. C. E. & Schuster, U. Recent variability of the global ocean carbon sink. Glob. Biogeochem. Cycles 28, 927–949 (2014).

    ADS 

    Google Scholar
     

  • Rödenbeck, C. et al. Global surface-ocean pCO2 and sea–air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Ocean Sci. 9, 193–216 (2013).

    ADS 

    Google Scholar
     

  • Chau, T. T. T., Gehlen, M. & Chevallier, F. A seamless ensemble-based reconstruction of surface ocean pCO2 and air–sea CO2 fluxes over the global coastal and open oceans. Biogeosciences 19, 1087–1109 (2022).

  • DeVries, T. et al. Decadal trends in the ocean carbon sink. Proc. Natl Acad. Sci. USA 116, 11646–11651 (2019).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Gruber, N. et al. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363, 1193–1199 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Gaillardet, J., Dupre, B., Louvat, P. & Allègre, C. J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30 (1999).

    CAS 
    ADS 

    Google Scholar
     

  • Hartmann, J., Jansen, N., Dürr, H. H., Kempe, S. & Köhler, P. Global CO2 consumption by chemical weathering: what is the contribution of highly active weathering regions? Glob. Planet. Change 69, 185–194 (2009).

    ADS 

    Google Scholar
     

  • Aumont, O. et al. Riverine-driven interhemispheric transport of carbon. Glob. Biogeochem. Cycles 15, 393–405 (2001).

    CAS 
    ADS 

    Google Scholar
     

  • Cai, W. J. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annu. Rev. Mar. Sci. 3, 123–145 (2011).

    ADS 

    Google Scholar
     

  • Maher, D. T. & Eyre, B. D. Benthic fluxes of dissolved organic carbon in three temperate Australian estuaries: implications for global estimates of benthic DOC fluxes. J. Geophys. Res. 115, G04039 (2010).

    ADS 

    Google Scholar
     

  • Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8 (2005).

    CAS 
    ADS 

    Google Scholar
     

  • MacCreadie, P. et al. The future of blue carbon science. Nat. Commun. 10, 3998 (2019).

    ADS 

    Google Scholar
     

  • McLeod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).


    Google Scholar
     

  • Pendleton, L. et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl Acad. Sci. USA 113, 13785–13790 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013).

    CAS 
    ADS 

    Google Scholar
     

  • Liu, X. et al. Simulating water residence time in the coastal ocean: a global perspective. Geophys. Res. Lett. 46, 13910–13919 (2019).

    ADS 

    Google Scholar
     

  • Dittmar, T., Hertkorn, N., Kattner, G. & Lara, R. J. Mangroves, a major source of dissolved organic carbon to the oceans. Glob. Biogeochem. Cycles 20, GB1012 (2006).

    ADS 

    Google Scholar
     

  • Barrón, C., Apostolaki, E. T. & Duarte, C. M. Dissolved organic carbon fluxes by seagrass meadows and macroalgal beds. Front. Mar. Sci. 1, 42 (2014).


    Google Scholar
     

  • Maher, D. T., Call, M., Santos, I. R. & Sanders, C. J. Beyond burial: lateral exchange is a significant atmospheric carbon sink in mangrove forests. Biol. Lett. 14, 20180200 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bogard, M. J. et al. Hydrologic export is a major component of coastal wetland carbon budgets. Glob. Biogeochem. Cycles 34, e2019GB006430 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • Frischknecht, M., Münnich, M. & Gruber, N. Origin, transformation, and fate: the three-dimensional biological pump in the California Current System. J. Geophys. Res. Oceans 123, 7939–7962 (2018).

    ADS 

    Google Scholar
     

  • Ciais, P. et al. Empirical estimates of regional carbon budgets imply reduced global soil heterotrophic respiration. Natl Sci. Rev. 8, nwaa145 (2021).


    Google Scholar
     

  • Lovelock, C. E. & Reef, R. Variable impacts of climate change on blue carbon. One Earth 3, 195–211 (2020).

    ADS 

    Google Scholar
     

  • Striegl, R. G., Dornblaser, M. M., McDonald, C. P., Rover, J. R. & Stets, E. G. Carbon dioxide and methane emissions from the Yukon River system. Glob. Biogeochem. Cycles 26, GB0E05 (2012).


    Google Scholar
     

  • Butman, D. S. et al. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting. Proc. Natl Acad. Sci. USA 113, 58–63 (2016).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Wallin, M. B. et al. Evasion of CO2 from streams—the dominant component of the carbon export through the aquatic conduit in a boreal landscape. Glob. Change Biol. 19, 785–797 (2013).

    ADS 

    Google Scholar
     

  • Drake, T. W., Raymond, P. A. & Spencer, R. G. M. Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. 3, 132–142 (2018).

    CAS 

    Google Scholar
     

  • Maberly, S. C., Barker, P. A., Stott, A. W. & De Ville, M. M. Catchment productivity controls CO2 emissions from lakes. Nat. Clim. Change 3, 391–394 (2013).

    CAS 
    ADS 

    Google Scholar
     

  • Borges, A. V. et al. Globally significant greenhouse-gas emissions from African inland waters. Nat. Geosci. 8, 637–642 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • Tian, H. et al. Anthropogenic and climatic influences on carbon fluxes from eastern North America to the Atlantic Ocean: a process-based modeling study. J. Geophys. Res. Biogeosci. 120, 757–772 (2015). A pioneering study representing the land-to-ocean carbon transfers in a land-surface scheme of an Earth system model.

    CAS 

    Google Scholar
     

  • Gommet, C. A. S. et al. Spatio-temporal patterns and drivers of terrestrial dissolved organic carbon (DOC) leaching to the European river network. Earth Syst. Dyn. 13, 393–418 (2022).

  • Lauerwald, R. et al. ORCHILEAK (revision 3875): a new model branch to simulate carbon transfers along the terrestrial-aquatic continuum of the Amazon Basin. Geosci. Model Dev. 10, 3821–3859 (2017).

    CAS 
    ADS 

    Google Scholar
     

  • Ciais, P. et al. The impact of lateral carbon fluxes on the European carbon balance. Biogeosciences 5, 1259–1271 (2008).

    CAS 
    ADS 

    Google Scholar
     

  • Luyssaert, S. et al. The European land and inland water CO2, CO, CH4 and N2O balance between 2001 and 2005. Biogeosciences 9, 3357–3380 (2012).

    CAS 
    ADS 

    Google Scholar
     

  • Cavallaro, N. G. et al. in Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report (eds Cavallaro, N. et al). 1–878 (US Global Change Research Program, 2018).

  • Hastie, A. et al. CO2 evasion from boreal lakes: revised estimate, drivers of spatial variability, and future projections. Glob. Change Biol. 24, 711–728 (2018).

    ADS 

    Google Scholar
     

  • Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9, 53–60 (2011).


    Google Scholar
     

  • Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. & Hess, L. L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416, 617–620 (2002).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Abril, G. & Borges, A. V. Ideas and perspectives: carbon leaks from flooded land: do we need to replumb the inland water active pipe? Biogeosciences 16, 769–784 (2019).

    CAS 
    ADS 

    Google Scholar
     

  • Hastie, A., Lauerwald, R., Ciais, P. & Regnier, P. Aquatic carbon fluxes dampen the overall variation of net ecosystem productivity in the Amazon Basin: an analysis of the interannual variability in the boundless carbon cycle. Glob. Change Biol. 25, 2094–2111 (2019).

    ADS 

    Google Scholar
     

  • Gómez-Gener, L. et al. Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions. Nat. Geosci. 14, 289–294 (2021).

    ADS 

    Google Scholar
     

  • Abril, G. et al. Technical note: large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12, 67–78 (2015).

    ADS 

    Google Scholar
     

  • Golub, M., Desai, A. R., McKinley, G. A., Remucal, C. K. & Stanley, E. H. Large uncertainty in estimating pCO2 from carbonate equilibria in lakes. J. Geophys. Res. Biogeosci. 122, 2909–2924 (2017).

    CAS 

    Google Scholar
     

  • Heathcote, A. J., Anderson, N. J., Prairie, Y. T., Engstrom, D. R. & del Giorgio, P. A. Large increases in carbon burial in northern lakes during the Anthropocene. Nat. Commun. 6, 10016 (2015).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kastowski, M., Hinderer, M. & Vecsei, A. Long-term carbon burial in European lakes: analysis and estimate. Glob. Biogeochem. Cycles 25, GB3019 (2011).

    ADS 

    Google Scholar
     

  • Seitzinger, S. P. et al. Global river nutrient export: a scenario analysis of past and future trends. Glob. Biogeochem. Cycles 24, GB0A08 (2010).


    Google Scholar
     

  • Mayorga, E. et al. Global Nutrient Export from WaterSheds 2 (NEWS 2): model development and implementation. Environ. Model. Softw. 25, 837–853 (2010).


    Google Scholar
     

  • Ren, W. et al. Century-long increasing trend and variability of dissolved organic carbon export from the Mississippi River Basin driven by natural and anthropogenic forcing. Glob. Biogeochem. Cycles 30, 1288–1299 (2016).

    CAS 
    ADS 

    Google Scholar
     

  • Jones, J. B., Stanley, E. H. & Mulholland, P. J. Long‐term decline in carbon dioxide supersaturation in rivers across the contiguous United States. Geophys. Res. Lett. 30, 1495 (2003).

    ADS 

    Google Scholar
     

  • Ran, L. et al. Substantial decrease in CO2 emissions from Chinese inland waters due to global change. Nat. Commun. 12, 1730 (2021).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Park, J. H. et al. Reviews and syntheses: anthropogenic perturbations to carbon fluxes in Asian river systems—concepts, emerging trends, and research challenges. Biogeosciences 15, 3049–3069 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • Kicklighter, D. W. et al. Insights and issues with simulating terrestrial DOC loading of Arctic river networks. Ecol. Appl. 23, 1817–1836 (2013).

    PubMed 

    Google Scholar
     

  • Bowring, S. P. K. et al. ORCHIDEE MICT-LEAK (r5459), a global model for the production, transport, and transformation of dissolved organic carbon from Arctic permafrost regions—Part 2: model evaluation over the Lena River Basin. Geosci. Model Dev. 13, 507–520 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • Laruelle, G. G., Goossens, N., Arndt, S., Cai, W.-J. & Regnier, P. Air–water CO2 evasion from US East Coast estuaries. Biogeosciences 14, 2441–2468 (2017).

    CAS 
    ADS 

    Google Scholar
     

  • St-Laurent, P. et al. Relative impacts of global changes and regional watershed changes on the inorganic carbon balance of the Chesapeake Bay. Biogeosciences 17, 3779–3796 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • Durr, H. H. et al. Worldwide typology of nearshore coastal systems: defining the estuarine filter of river inputs to the oceans. Estuaries Coast. 34, 441–458 (2011).


    Google Scholar
     

  • Laruelle, G. G. et al. Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide. Nat. Commun. 9, 454 (2018).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Lacroix, F., Ilyina, T., Mathis, M., Laruelle, G. G. & Regnier, P. Historical increases in land-derived nutrient inputs may alleviate effects of a changing physical climate on the oceanic carbon cycle. Glob. Change Biol. 27, 5491–5513 (2021).


    Google Scholar
     

  • Cotovicz, L. Jr, Knoppers, B., Brandini, N., Santos, S. & Abril, G. A strong CO2 sink enhanced by eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil). Biogeosciences 12, 6125–6146 (2015).

    ADS 

    Google Scholar
     



  • Source link