• Wittkopp, P. J. & Kalay, G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet. 13, 59–69 (2011).

    PubMed 

    Google Scholar
     

  • Hill, M. S., Vande Zande, P. & Wittkopp, P. J. Molecular and evolutionary processes generating variation in gene expression. Nat. Rev. Genet. 22, 203–215 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Fuqua, T. et al. Dense and pleiotropic regulatory information in a developmental enhancer. Nature 587, 235–239 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Visser, J. A. G. M. & Krug, J. Empirical fitness landscapes and the predictability of evolution. Nat. Rev. Genet. 15, 480–490 (2014).

    PubMed 

    Google Scholar
     

  • Kondrashov, D. A. & Kondrashov, F. A. Topological features of rugged fitness landscapes in sequence space. Trends Genet. 31, 24–33 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • de Visser, J. A. G. M., Elena, S. F., Fragata, I. & Matuszewski, S. The utility of fitness landscapes and big data for predicting evolution. Heredity 121, 401–405 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weirauch, M. T. & Hughes, T. R. Conserved expression without conserved regulatory sequence: the more things change, the more they stay the same. Trends Genet. 26, 66–74 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Orr, H. A. The genetic theory of adaptation: a brief history. Nat. Rev. Genet. 6, 119–127 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Weinreich, D. M., Lan, Y., Wylie, C. S. & Heckendorn, R. B. Should evolutionary geneticists worry about higher-order epistasis? Curr. Opin. Genet. Dev. 23, 700–707 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venkataram, S. et al. Development of a comprehensive genotype-to-fitness map of adaptation-driving mutations in yeast. Cell 166, 1585–1596 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keren, L. et al. Massively parallel interrogation of the effects of gene expression levels on fitness. Cell 166, 1282–1294 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Sarkisyan, K. S. et al. Local fitness landscape of the green fluorescent protein. Nature 533, 397–401 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogden, P. J., Kelsic, E. D., Sinai, S. & Church, G. M. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design. Science 366, 1139–1143 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pitt, J. N. & Ferré-D’Amaré, A. R. Rapid construction of empirical RNA fitness landscapes. Science 330, 376–379 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shultzaberger, R. K., Malashock, D. S., Kirsch, J. F. & Eisen, M. B. The fitness landscapes of cis-acting binding sites in different promoter and environmental contexts. PLoS Genet. 6, e1001042 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mustonen, V., Kinney, J., Callan, C. G. & Lässig, M. Energy-dependent fitness: a quantitative model for the evolution of yeast transcription factor binding sites. Proc. Natl Acad. Sci. USA 105, 12376–12381 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartl, D. L. What can we learn from fitness landscapes? Curr. Opin. Microbiol. 0, 51–57 (2014).

    PubMed Central 

    Google Scholar
     

  • Otwinowski, J. & Nemenman, I. Genotype to phenotype mapping and the fitness landscape of the E. coli lac promoter. PLoS ONE 8, e61570 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinai, S. & Kelsic, E. D. A primer on model-guided exploration of fitness landscapes for biological sequence design. Preprint at https://arxiv.org/abs/2010.10614 (2020).

  • Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12, 931–934 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avsec, Ž. et al. Base-resolution models of transcription-factor binding reveal soft motif syntax. Nat. Genet. 53, 354–366 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shrikumar, A., Greenside, P. & Kundaje, A. Learning important features through propagating activation differences. Proc. 34th International Conference on Machine Learning 3145–3153 (2017).

  • Avsec, Ž. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat. Methods 18, 1196–1203 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fragata, I., Blanckaert, A., Louro, M. A. D., Liberles, D. A. & Bank, C. Evolution in the light of fitness landscape theory. Trends Ecol. Evol. 34, 69–82 (2019).

    PubMed 

    Google Scholar
     

  • Payne, J. L. & Wagner, A. The causes of evolvability and their evolution. Nat. Rev. Genet. 20, 24–38 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • de Boer, C. G. et al. Deciphering eukaryotic gene-regulatory logic with 100 million random promoters. Nat. Biotechnol. 38, 56–65 (2020).

    PubMed 

    Google Scholar
     

  • Crocker, J. et al. Low affinity binding site clusters confer hox specificity and regulatory robustness. Cell 160, 191–203 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Habib, N., Wapinski, I., Margalit, H., Regev, A. & Friedman, N. A functional selection model explains evolutionary robustness despite plasticity in regulatory networks. Mol. Syst. Biol. 8, 619 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gillespie, J. H. Molecular evolution over the mutational landscape. Evolution 38, 1116–1129 (1984).

    CAS 
    PubMed 

    Google Scholar
     

  • Jerison, E. R. & Desai, M. M. Genomic investigations of evolutionary dynamics and epistasis in microbial evolution experiments. Curr. Opin. Genet. Dev. 35, 33–39 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sæther, B.-E. & Engen, S. The concept of fitness in fluctuating environments. Trends Ecol. Evol. 30, 273–281 (2015).

    PubMed 

    Google Scholar
     

  • Vaswani, A. et al. in Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 5998–6008 (Curran Associates, 2017).

  • Weirauch, M. T. et al. Evaluation of methods for modeling transcription factor sequence specificity. Nat. Biotechnol. 31, 126–134 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, N. & Bielawski, N. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. 15, 496–503 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moses, A. M. Statistical tests for natural selection on regulatory regions based on the strength of transcription factor binding sites. BMC Evol. Biol. 9, 286 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rifkin, S. A., Houle, D., Kim, J. & White, K. P. A mutation accumulation assay reveals a broad capacity for rapid evolution of gene expression. Nature 438, 220–223 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Peter, J. et al. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556, 339–344 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erb, I. & van Nimwegen, E. Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters. PLoS One 6, e24279 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilad, Y., Oshlack, A. & Rifkin, S. A. Natural selection on gene expression. Trends Genet. 22, 456–461 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Alhusaini, N. & Coller, J. The deadenylase components Not2p, Not3p, and Not5p promote mRNA decapping. RNA 22, 709–721 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J.-R., Maclean, C. J., Park, C., Zhao, H. & Zhang, J. Intra and interspecific variations of gene expression levels in yeast are largely neutral: (Nei Lecture, SMBE 2016, Gold Coast). Mol. Biol. Evol. 34, 2125–2139 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. et al. A quantitative framework for characterizing the evolutionary history of mammalian gene expression. Genome Res. 29, 53–63 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Payne, J. L. & Wagner, A. Mechanisms of mutational robustness in transcriptional regulation. Front. Genet. 6, 322 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shoval, O. et al. Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. Science 336, 1157–1160 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • van Dijk, D. et al. Finding archetypal spaces using neural networks. IEEE International Conference on Big Data 2634-2643 (2019).

  • He, X., Duque, T. S. P. C. & Sinha, S. Evolutionary origins of transcription factor binding site clusters. Mol. Biol. Evol. 29, 1059–1070 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Cliften, P. F. et al. Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. Genome Res. 11, 1175–1186 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Heinz, S., Romanoski, C. E., Benner, C. & Glass, C. K. The selection and function of cell type-specific enhancers. Nat. Rev. Mol. Cell Biol. 16, 144–154 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lehner, B. Selection to minimise noise in living systems and its implications for the evolution of gene expression. Mol. Syst. Biol. 4, 170 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Metzger, B. P. H., Yuan, D. C., Gruber, J. D., Duveau, F. & Wittkopp, P. J. Selection on noise constrains variation in a eukaryotic promoter. Nature 521, 344–347 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kosuri, S. et al. Composability of regulatory sequences controlling transcription and translation in Escherichia coli. Proc. Natl Acad. Sci. USA. 110, 14024–14029 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shalem, O. et al. Systematic dissection of the sequence determinants of gene 3’ end mediated expression control. PLoS Genet. 11, e1005147 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinney, J. B., Murugan, A., Callan, C. G. Jr & Cox, E. C. Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory sequence. Proc. Natl Acad. Sci. USA. 107, 9158–9163 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharon, E. et al. Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat. Biotechnol. 30, 521–530 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 30, 271–277 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwasnieski, J. C., Mogno, I., Myers, C. A., Corbo, J. C. & Cohen, B. A. Complex effects of nucleotide variants in a mammalian cis-regulatory element. Proc. Natl Acad. Sci. USA 109, 19498–19503 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kircher, M. et al. Saturation mutagenesis of twenty disease-associated regulatory elements at single base-pair resolution. Nat. Commun. 10, 3583 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Townsley, K. G., Brennand, K. J. & Huckins, L. M. Massively parallel techniques for cataloguing the regulome of the human brain. Nat. Neurosci. 23, 1509–1521 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renganaath, K. et al. Systematic identification of cis-regulatory variants that cause gene expression differences in a yeast cross. eLife 9, e62669 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Travers, C. et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15, 20170387 (2018).


    Google Scholar
     

  • Avsec, Ž. et al. The Kipoi repository accelerates community exchange and reuse of predictive models for genomics. Nat. Biotechnol. 37, 592–600 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quang, D. & Xie, X. FactorNet: a deep learning framework for predicting cell type specific transcription factor binding from nucleotide-resolution sequential data. Methods 166, 40–47 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou H. et al. Towards a better understanding of reverse-complement equivariance for deep learning models in genomics. Proc. 16th Machine Learning in Computational Biology meeting 165, 1–33 (2022).

  • Morrow, A. et al. Convolutional kitchen sinks for transcription factor binding site prediction. Preprint at https://arxiv.org/abs/1706.00125 (2017).

  • Kelley, D. R., Snoek, J. & Rinn, J. L. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 26, 990–999 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koo, P. K., Majdandzic, A., Ploenzke, M., Anand, P. & Paul, S. B. Global importance analysis: an interpretability method to quantify importance of genomic features in deep neural networks. PLoS Comput. Biol. 17, e1008925 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quang, D. & Xie, X. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res. 44, e107 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. International Conference on Learning Representations (Poster) (2015).

  • Abadi, M. et al. TensorFlow: large-scale machine learning on heterogenous systems. Software available from https://www.tensorflow.org/ (2015).

  • Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. In Proc. 44th Annual International Symposium on Computer Architecture 1–12 (2017).

  • Li, J., Pu, Y., Tang, J., Zou, Q. & Guo, F. DeepATT: a hybrid category attention neural network for identifying functional effects of DNA sequences. Brief. Bioinform. 22, bbaa159 (2020).


    Google Scholar
     

  • Ullah, F. & Ben-Hur, A. A self-attention model for inferring cooperativity between regulatory features. Nucleic Acids Res. 49, e77 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clauwaert, J., Menschaert, G. & Waegeman, W. Explainability in transformer models for functional genomics. Brief. Bioinform. 22, bbab060 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hinton, G. & Tieleman, T. Lecture 6.5—RmsProp: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning 4, 26–31 (2012).


    Google Scholar
     

  • Sinai, S. et al. AdaLead: a simple and robust adaptive greedy search algorithm for sequence design. Preprint at https://arxiv.org/abs/2010.02141 (2020).

  • Linder, J., Bogard, N., Rosenberg, A. B. & Seelig, G. A generative neural network for maximizing fitness and diversity of synthetic DNA and protein sequences. Cell Syst. 11, 49–62 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brookes, D., Park, H. & Listgarten, J. Conditioning by adaptive sampling for robust design. Proc. Mach. Learn. Res. 97, 773–782 (2019).


    Google Scholar
     

  • Killoran, N., Lee, L. J., Delong, A., Duvenaud, D. & Frey, B. J. Generating and designing DNA with deep generative models. Neurips Computational Biology Workshop (2017).

  • Fortin, F.-A., Rainville, F.-M. D., Gardner, M.-A., Parizeau, M. & Gagné, C. DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012).

    MathSciNet 

    Google Scholar
     

  • Jaeger, S. A. et al. Conservation and regulatory associations of a wide affinity range of mouse transcription factor binding sites. Genomics 95, 185–195 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Tanay, A. Extensive low-affinity transcriptional interactions in the yeast genome. Genome Res. 16, 962–972 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sniegowski, P. D. & Gerrish, P. J. Beneficial mutations and the dynamics of adaptation in asexual populations. Phil. Trans. R. Soc. B 365, 1255–1263 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szendro, I. G., Franke, J., de Visser, J. A. & Krug, J. Predictability of evolution depends nonmonotonically on population size. Proc. Natl Acad. Sci. USA 110, 571–576 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Orr, H. A. The population genetics of adaptation: the adaptation of DNA Sequences. Evolution 56, 1317–1330 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Bailey, T. L. DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27, 1653–1659 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Boer, C. G. & Hughes, T. R. YeTFaSCo: a database of evaluated yeast transcription factor sequence specificities. Nucleic Acids Res. 40, D169–D179 (2012).

    PubMed 

    Google Scholar
     

  • Kent, W. J. BLAT—the BLAST-Like Alignment Tool. Genome Res. 12, 656–664 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cherry, J. M. et al. Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res. 40, D700–D705 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Smith, J. D., McManus, K. F. & Fraser, H. B. A novel test for selection on cis-regulatory elements reveals positive and negative selection acting on mammalian transcriptional enhancers. Mol. Biol. Evol. 30, 2509–2518 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. & Robinson-Rechavi, M. Robust inference of positive selection on regulatory sequences in the human brain. Sci. Adv. 6, eabc9863 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rice, D. P. & Townsend, J. P. A test for selection employing quantitative trait locus and mutation accumulation data. Genetics 190, 1533–1545 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denver, D. R., Morris, K., Lynch, M. & Thomas, W. K. High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature 430, 679–682 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson, D. A. et al. Evolutionary principles of modular gene regulation in yeasts. eLife 2, e00603 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yassour, M. et al. Strand-specific RNA sequencing reveals extensive regulated long antisense transcripts that are conserved across yeast species. Genome Biol. 11, R87 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Wapinski, I., Pfeffer, A., Friedman, N. & Regev, A. Natural history and evolutionary principles of gene duplication in fungi. Nature 449, 54–61 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yates, A. D. et al. Ensembl 2020. Nucleic Acids Res. 48, D682–D688 (2020).

    CAS 

    Google Scholar
     

  • DiCarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR–Cas systems. Nucleic Acids Res. 41, 4336–4343 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleiss, A. et al. Reshuffling yeast chromosomes with CRISPR/Cas9. PLoS Genet. 15, e1008332 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horwitz, A. A. et al. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR–Cas. Cell Syst. 1, 88–96 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vandesompele, J. et al. Accurate normalization of real-time quantitative RT–PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034.1 (2002).


    Google Scholar
     

  • Teste, M.-A., Duquenne, M., François, J. M. & Parrou, J.-L. Validation of reference genes for quantitative expression analysis by real-time RT–PCR in Saccharomyces cerevisiae. BMC Mol. Biol. 10, 99 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mardones, W. et al. Rapid selection response to ethanol in Saccharomyces eubayanus emulates the domestication process under brewing conditions. Microb. Biotechnol. https://doi.org/10.1111/1751-7915.13803 (2021).

  • Ibstedt, S. et al. Concerted evolution of life stage performances signals recent selection on yeast nitrogen use. Mol. Biol. Evol. 32, 153–161 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Rich, M. S. et al. Comprehensive analysis of the SUL1 promoter of Saccharomyces cerevisiae. Genetics 203, 191–202 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rest, J. S. et al. Nonlinear fitness consequences of variation in expression level of a eukaryotic gene. Mol. Biol. Evol. 30, 448–456 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Bergen, A. C., Olsen, G. M. & Fay, J. C. Divergent MLS1 promoters lie on a fitness plateau for gene expression. Mol. Biol. Evol. 33, 1270–1279 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alstott, J., Bullmore, E. & Plenz, D. Powerlaw: a Python package for analysis of heavy-tailed distributions. PLoS One 9, e85777 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link