• DeFelipe, J. et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat. Rev. Neurosci. 14, 202–216 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krienen, F. M. et al. Innovations present in the primate interneuron repertoire. Nature 586, 262–269 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Flames, N. et al. Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. J. Neurosci. 27, 9682–9695 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansen, D. V. et al. Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences. Nat. Neurosci. 16, 1576–1587 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, L., Mi, D., Llorca, A. & Marín, O. Development and functional diversification of cortical interneurons. Neuron 100, 294–313 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, T. et al. Subcortical origins of human and monkey neocortical interneurons. Nat. Neurosci. 16, 1588–1597 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Fishell, G. & Kepecs, A. Interneuron types as attractors and controllers. Annu. Rev. Neurosci. 43, 1–30 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Rakic, P. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183, 425–427 (1974).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zhu, Y. et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362, eaat8077 (2018).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons. Nature 555, 457–462 (2018).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Loo, L. et al. Single-cell transcriptomic analysis of mouse neocortical development. Nat. Commun. 10, 134 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Tepe, B. et al. Single-cell RNA-seq of mouse olfactory bulb reveals cellular heterogeneity and activity-dependent molecular census of adult-born neurons. Cell Rep. 25, 2689–2703 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, D. E. & Klein, A. M. Lineage tracing meets single-cell omics: opportunities and challenges. Nat. Rev. Genet 21, 410–427 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, J. A. et al. Common cell type nomenclature for the mammalian brain. eLife 9, e59928 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lange, M. et al. CellRank for directed single-cell fate mapping. Nat. Methods 19, 159–170 (2022).

  • Paul, A. et al. Transcriptional architecture of synaptic communication delineates GABAergic neuron identity. Cell 171, 522–539 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature563, 72–78 (2018).

  • Valero, M. et al. Sleep down state-active ID2/Nkx2.1 interneurons in the neocortex. Nat. Neurosci. 24, 401–411 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Kuerbitz, J. et al. Loss of intercalated cells (ITCs) in the mouse amygdala of Tshz1 mutants correlates with fear, depression, and social interaction phenotypes. J. Neurosci. 38, 1160–1177 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Märtin, A. et al. A spatiomolecular map of the striatum. Cell Rep. 29, 4320–4333 (2019).

    PubMed 

    Google Scholar
     

  • Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muñoz-Manchado, A. B. et al. Diversity of interneurons in the dorsal striatum revealed by single-cell RNA sequencing and PatchSeq. Cell Rep. 24, 2179–2190 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agoston, Z. et al. Meis2 is a Pax6 co-factor in neurogenesis and dopaminergic periglomerular fate specification in the adult olfactory bulb. Development 141, 28–38 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Cave, J. W. et al. Differential regulation of dopaminergic gene expression by Er81. J. Neurosci. 30, 4717–4724 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuerbitz, J. et al. Temporally distinct roles for the zinc finger transcription factor Sp8 in the generation and migration of dorsal lateral ganglionic eminence (dLGE)-derived neuronal subtypes in the mouse. Cereb. Cortex 31, 1744–1762 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Luzzati, F. et al. Glia-independent chains of neuroblasts through the subcortical parenchyma of the adult rabbit brain. Proc. Natl Acad. Sci 100, 13036–13041 (2003).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Paredes, M. F. et al. Extensive migration of young neurons into the infant human frontal lobe. Science 354, aaf7073 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frazer, S. et al. Transcriptomic and anatomic parcellation of 5-HT 3A R expressing cortical interneuron subtypes revealed by single-cell RNA sequencing. Nat. Commun. 8, 14219 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Dubach, M. et al. Primate neostriatal neurons containing tyrosine hydroxylase: immunohistochemical evidence. Neurosci. Lett. 75, 205–210 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Arendt, D. et al. The origin and evolution of cell types. Nat. Rev. Genet. 17, 744–757 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paredes, M. F., Sorrells, S. F., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Brain size and limits to adult neurogenesis. J. Comp. Neurol. 524, 646–664 (2016).

    PubMed 

    Google Scholar
     

  • Zhang, K. & Sejnowski, T. J. A universal scaling law between gray matter and white matter of cerebral cortex. Proc. Natl Acad. Sci. USA 97, 5621–5626 (2000).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Stephan, H. & Andy, O. J. Quantitative comparative neuroanatomy of primates: an attempt at a phylogenetic interpretation. Ann. N.Y. Acad. Sci. 167, 370–387 (1969).

    ADS 

    Google Scholar
     

  • Lledo, P.-M., Alonso, M. & Grubb, M. S. Adult neurogenesis and functional plasticity in neuronal circuits. Nat. Rev. Neurosci. 7, 179–193 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Miller, D. J. et al. Prolonged myelination in human neocortical evolution. Proc. Natl Acad. Sci. US.A 109, 16480–16485 (2012).

    CAS 
    ADS 

    Google Scholar
     

  • Duchatel, R. J., Shannon Weickert, C. & Tooney, P. A. White matter neuron biology and neuropathology in schizophrenia. NPJ Schizophr. 5, 10 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diederich, N. J., Surmeier, D. J., Uchihara, T., Grillner, S. & Goetz, C. G. Parkinson’s disease: is it a consequence of human brain evolution? Movement Disord. 34, 453–459 (2019).

    PubMed 

    Google Scholar
     

  • Sousa, A. M. M. et al. Molecular and cellular reorganization of neural circuits in the human lineage. Science 358, 1027–1032 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Betarbet, R. et al. Dopaminergic neurons intrinsic to the primate striatum. J. Neurosci. 17, 6761–6768 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Björklund, A. & Dunnett, S. B. Dopamine neuron systems in the brain: an update. Trends Neurosci. 30, 194–202 (2007).

    PubMed 

    Google Scholar
     

  • Crick, F. C. & Koch, C. What is the function of the claustrum? Philos. Trans. R. Soc. B Biol. Sci. 360, 1271–1279 (2005).


    Google Scholar
     

  • Clancy, B., Darlington, R. B. & Finlay, B. L. Translating developmental time across mammalian species. Neuroscience 105, 7–17 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • La Manno, G. et al. Molecular architecture of the developing mouse brain. Nature 596, 92–96 (2020).


    Google Scholar
     

  • Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, A. G., Kulkarni, A., Harper, M. & Konopka, G. Single-cell analysis of Foxp1-driven mechanisms essential for striatal development. Cell Rep. 30, 3051–3066.e7 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGinnis, C. S. et al. MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat. Methods 16, 619–626 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Fiddes, I. T. et al. Comparative Annotation Toolkit (CAT)—simultaneous clade and personal genome annotation. Genome Res. 28, 1029–1038 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polański, K. et al. BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics 36, 964–965 (2020).

    PubMed 

    Google Scholar
     

  • Bielle, F. et al. Multiple origins of Cajal–Retzius cells at the borders of the developing pallium. Nat. Neurosci. 8, 1002–1012 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Habib, N. et al. Div-seq: single-nucleus RNA-seq reveals dynamics of rare adult newborn neurons. Science 353, 925–928 (2016).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Sun, Y., Ip, P. & Chakrabartty, A. Simple elimination of background fluorescence in formalin-fixed human brain tissue for immunofluorescence microscopy. J. Vis. Exp. https://doi.org/10.3791/56188(2017).

  • Miyoshi, G. et al. Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J. Neurosci. 30, 1582–1594 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stenman, J., Toresson, H. & Campbell, K. Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb neurogenesis. J. Neurosci. 23, 167–174 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Speir, M. L. et al. UCSC Cell Browser: visualize your single-cell data. Bioinformatics 37, 4578–4580 (2021).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574, 418–422 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Alzu’bi, A. & Clowry, G. J. Multiple origins of secretagogin expressing cortical GABAergic neuron precursors in the early human fetal telencephalon. Front. Neuroanat. 14, 61 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link