• Henson, P. M. Cell removal: efferocytosis. Annu. Rev. Cell Dev. Biol. 33, 127–144 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boada-Romero, E., Martinez, J., Heckmann, B. L. & Green, D. R. The clearance of dead cells by efferocytosis. Nat. Rev. Mol. Cell Biol. 21, 398–414 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morioka, S., Maueroder, C. & Ravichandran, K. S. Living on the edge: efferocytosis at the interface of homeostasis and pathology. Immunity 50, 1149–1162 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cabeza-Cabrerizo, M., Cardoso, A., Minutti, C. M., Pereira da Costa, M. & Reis, E. S. C. Dendritic cells revisited. Annu. Rev. Immunol. 39, 131–166 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guermonprez, P. & Amigorena, S. Pathways for antigen cross presentation. Springer Semin. Immunopathol. 26, 257–271 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89 (1998).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nat. Med. 5, 1249–1255 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Blander, J. M. & Medzhitov, R. On regulation of phagosome maturation and antigen presentation. Nat. Immunol. 7, 1029–1035 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Khanna, S. et al. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS ONE 5, e9539 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wetzler, C., Kampfer, H., Stallmeyer, B., Pfeilschifter, J. & Frank, S. Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair. J. Invest. Dermatol. 115, 245–253 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moulik, P. K., Mtonga, R. & Gill, G. V. Amputation and mortality in new-onset diabetic foot ulcers stratified by etiology. Diabetes Care 26, 491–494 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • Lenz, A., Heine, M., Schuler, G. & Romani, N. Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization. J. Clin. Invest. 92, 2587–2596 (1993).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Seneschal, J., Clark, R. A., Gehad, A., Baecher-Allan, C. M. & Kupper, T. S. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 36, 873–884 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mirza, R., DiPietro, L. A. & Koh, T. J. Selective and specific macrophage ablation is detrimental to wound healing in mice. Am. J. Pathol. 175, 2454–2462 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shook, B., Xiao, E., Kumamoto, Y., Iwasaki, A. & Horsley, V. CD301b+ macrophages are essential for effective skin wound healing. J. Invest. Dermatol. 136, 1885–1891 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Phillipson, M. & Kubes, P. The healing power of neutrophils. Trends Immunol. 40, 635–647 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morioka, S. et al. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature 563, 714–718 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kelly, B. & Pearce, E. L. Amino assets: how amino acids support immunity. Cell Metab. 32, 154–175 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Procaccini, C. et al. Signals of pseudo-starvation unveil the amino acid transporter SLC7A11 as key determinant in the control of Treg cell proliferative potential. Immunity 54, 1543–1560.e6 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • D’Angelo, J. A. et al. The cystine/glutamate antiporter regulates dendritic cell differentiation and antigen presentation. J. Immunol. 185, 3217–3226 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fotiadis, D., Kanai, Y. & Palacin, M. The SLC3 and SLC7 families of amino acid transporters. Mol. Aspects Med. 34, 139–158 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Merckx, E. et al. Absence of system xc on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis. J. Neuroinflammation 14, 9 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Massie, A. et al. Time-dependent changes in striatal xCT protein expression in hemi-Parkinson rats. Neuroreport 19, 1589–1592 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mesci, P. et al. System xC is a mediator of microglial function and its deletion slows symptoms in amyotrophic lateral sclerosis mice. Brain 138, 53–68 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Lin, C. H. et al. Decreased mRNA expression for the two subunits of system xc, SLC3A2 and SLC7A11, in WBC in patients with schizophrenia: Evidence in support of the hypo-glutamatergic hypothesis of schizophrenia. J. Psychiatr. Res. 72, 58–63 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Massie, A. et al. Dopaminergic neurons of system xc-deficient mice are highly protected against 6-hydroxydopamine-induced toxicity. FASEB J. 25, 1359–1369 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaleeba, J. A. & Berger, E. A. Kaposi’s sarcoma-associated herpesvirus fusion-entry receptor: cystine transporter xCT. Science 311, 1921–1924 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kandasamy, R. K. et al. A time-resolved molecular map of the macrophage response to VSV infection. NPJ Syst. Biol. Appl. 2, 16027 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rabinowitz, J. et al. xCT/SLC7A11 antiporter function inhibits HIV-1 infection. Virology 556, 149–160 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Robert, S. M. et al. SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma. Sci. Transl. Med. 7, 289ra286 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Koppula, P., Zhuang, L. & Gan, B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell https://doi.org/10.1007/s13238-020-00789-5 (2020).

  • Hassannia, B., Vandenabeele, P. & Vanden Berghe, T. Targeting ferroptosis to iron out cancer. Cancer Cell 35, 830–849 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Conrad, M. & Pratt, D. A. The chemical basis of ferroptosis. Nat. Chem. Biol. 15, 1137–1147 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jiang, X., Stockwell, B. R. & Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 22, 266–282 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zilka, O. et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent. Sci. 3, 232–243 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sato, M. et al. The ferroptosis inducer erastin irreversibly inhibits system xc and synergizes with cisplatin to increase cisplatin’s cytotoxicity in cancer cells. Sci. Rep. 8, 968 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rajesh, A. et al. Depletion of langerin+ cells enhances cutaneous wound healing. Immunology 160, 366–381 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rajesh, A. et al. Skin antigen-presenting cells and wound healing: new knowledge gained and challenges encountered using mouse depletion models. Immunology 163, 98–104 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lachmann, A. et al. Massive mining of publicly available RNA-seq data from human and mouse. Nat. Commun. 9, 1366 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem. Biol. 26, 623–633.e629 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Keramati, A. R. et al. A form of the metabolic syndrome associated with mutations in DYRK1B. N. Engl. J. Med. 370, 1909–1919 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Honma, K., Kamikubo, M., Mochizuki, K. & Goda, T. Insulin-induced inhibition of gluconeogenesis genes, including glutamic pyruvic transaminase 2, is associated with reduced histone acetylation in a human liver cell line. Metabolism 71, 118–124 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nakayasu, E. S. et al. Comprehensive proteomics analysis of stressed human islets identifies GDF15 as a target for type 1 diabetes intervention. Cell Metab. 31, 363–374.e366 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Beale, E. G., Harvey, B. J. & Forest, C. PCK1 and PCK2 as candidate diabetes and obesity genes. Cell Biochem. Biophys. 48, 89–95 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thwe, P. M. et al. Cell-intrinsic glycogen metabolism supports early glycolytic reprogramming required for dendritic cell immune responses. Cell Metab. 26, 558–567.e555 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhao, G. et al. Delayed wound healing in diabetic (db/db) mice with Pseudomonas aeruginosa biofilm challenge: a model for the study of chronic wounds. Wound Repair Regen. 18, 467–477 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bonnefoy, F. et al. Factors produced by macrophages eliminating apoptotic cells demonstrate pro-resolutive properties and terminate ongoing inflammation. Front. Immunol. 9, 2586 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Pakyari, M., Farrokhi, A., Maharlooei, M. K. & Ghahary, A. Critical role of transforming growth factor beta in different phases of wound healing. Adv. Wound Care 2, 215–224 (2013).

    Article 

    Google Scholar
     

  • Coll, A. P. et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature 578, 444–448 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Patsalos, A. et al. A growth factor-expressing macrophage subpopulation orchestrates regenerative inflammation via GDF-15. J. Exp. Med. 219, e20210420 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Deckers, J. et al. Co-activation of glucocorticoid receptor and peroxisome proliferator-activated receptor-γ in murine skin prevents worsening of atopic march. J. Invest. Dermatol. 138, 1360–1370 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sepulveda, F. E. et al. Critical role for asparagine endopeptidase in endocytic Toll-like receptor signaling in dendritic cells. Immunity 31, 737–748 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wiernicki, B. et al. Excessive phospholipid peroxidation distinguishes ferroptosis from other cell death modes including pyroptosis. Cell Death Dis. 11, 922 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hoste, E. et al. OTULIN maintains skin homeostasis by controlling keratinocyte death and stem cell identity. Nat. Commun. 12, 5913 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sato, H. et al. Redox imbalance in cystine/glutamate transporter-deficient mice. J. Biol. Chem. 280, 37423–37429 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Van Hove, L. et al. Fibrotic enzymes modulate wound-induced skin tumorigenesis. EMBO Rep. 22, e51573 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lambrecht, S. et al. Growth differentiation factor 15, a marker of lung involvement in systemic sclerosis, is involved in fibrosis development but is not indispensable for fibrosis development. Arthritis Rheumatol. 66, 418–427 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hoste, E. et al. Innate sensing of microbial products promotes wound-induced skin cancer. Nat. Commun. 6, 5932 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Van Liefferinge, J. et al. Comparative analysis of antibodies to xCT (Slc7a11): forewarned is forearmed. J. Comp. Neurol. 524, 1015–1032 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     



  • Source link