• Hoek, K. S. & Goding, C. R. Cancer stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res. 23, 746–759 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Fane, M. E., Chhabra, Y., Smith, A. G. & Sturm, R. A. BRN2, a POUerful driver of melanoma phenotype switching and metastasis. Pigment Cell Melanoma Res. 32, 9–24 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Kaur, A., Webster, M. R. & Weeraratna, A. T. In the Wnt-er of life: Wnt signalling in melanoma and ageing. Br. J. Cancer 115, 1273–1279 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Kaur, A. et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532, 250–254 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Webster, M. R. et al. Paradoxical role for wild-type p53 in driving therapy resistance in melanoma. Mol. Cell 77, 633–644 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Kaur, A. et al. Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. 9, 64–81 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Ecker, B. L. et al. Age-related changes in HAPLN1 increase lymphatic permeability and affect routes of melanoma metastasis. Cancer Discov. 9, 82–95 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Alicea, G. M. et al. Changes in aged fibroblast lipid metabolism induce age-dependent melanoma cell resistance to targeted therapy via the fatty acid transporter FATP2. Cancer Discov. 10, 1282–1295 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Pereira, C., Schaer, D. J., Bachli, E. B., Kurrer, M. O. & Schoedon, G. Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10. Arterioscl. Thromb. Vasc. Biol. 28, 504–510 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Trevant, B. et al. Expression of secreted frizzled related protein 1, a Wnt antagonist, in brain, kidney, and skeleton is dispensable for normal embryonic development. J. Cell. Physiol. 217, 113–126 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Blakely, B. D. et al. Wnt5a regulates midbrain dopaminergic axon growth and guidance. PLoS ONE 6, e18373 (2011).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Webster, M. R. et al. Wnt5A promotes an adaptive, senescent-like stress response, while continuing to drive invasion in melanoma cells. Pigment Cell Melanoma Res. 28, 184–195 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Montagner, M. et al. Crosstalk with lung epithelial cells regulates Sfrp2-mediated latency in breast cancer dissemination. Nat. Cell Biol.  22, 289–296 (2020).

  • Ren, D. et al. Wnt5a induces and maintains prostate cancer cells dormancy in bone. J. Exp. Med. 216, 428–449 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Yumoto, K. et al. Axl is required for TGF-β2-induced dormancy of prostate cancer cells in the bone marrow. Sci. Rep. 6, 36520 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Sosa, M. S. et al. NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes. Nat. Commun. 6, 6170 (2015).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Sosa, M. S., Bragado, P. & Aguirre-Ghiso, J. A. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat. Rev. Cancer 14, 611 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Gao, X. L., Zhang, M., Tang, Y. L. & Liang, X. H. Cancer cell dormancy: mechanisms and implications of cancer recurrence and metastasis. Onco. Targets Ther. 10, 5219–5228 (2017).

    Article 

    Google Scholar
     

  • Gomis, R. R. & Gawrzak, S. Tumor cell dormancy. Mol. Oncol. 11, 62–78 (2017).

    Article 

    Google Scholar
     

  • Weeraratna, A. T. et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1, 279–288 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Radaszkiewicz, T. et al. RNF43 inhibits WNT5A-driven signaling and suppresses melanoma invasion and resistance to the targeted therapy. eLife 10, e65759 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Luo, C. et al. H3K27me3-mediated PGC1α gene silencing promotes melanoma invasion through WNT5A and YAP. J. Clin. Invest. 130, 853–862 (2020).

    CAS 
    Article 

    Google Scholar
     

  • O’Connell, M. P. et al. Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. Cancer Discov. 3, 1378–1393 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Sadeghi, R. S. et al. Wnt5a signaling induced phosphorylation increases APT1 activity and promotes melanoma metastatic behavior. eLife 7, e34362 (2018).

    Article 

    Google Scholar
     

  • Wellbrock, C. & Arozarena, I. Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy. Pigment Cell Melanoma Res. 28, 390–406 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Schoumacher, M. & Burbridge, M. Key roles of AXL and MER receptor tyrosine kinases in resistance to multiple anticancer therapies. Curr. Oncol. Rep. 19, 19 (2017).

    Article 

    Google Scholar
     

  • Tworkoski, K. A. et al. MERTK controls melanoma cell migration and survival and differentially regulates cell behavior relative to AXL. Pigment Cell Melanoma Res. 26, 527–541 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Zhu, S. et al. A genomic screen identifies TYRO3 as a MITF regulator in melanoma. Proc. Natl Acad. Sci. USA 106, 17025–17030 (2009).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Lew, E. D. et al. Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities. eLife 3, e03385 (2014).

    Article 

    Google Scholar
     

  • Davra, V., Kimani, S. G., Calianese, D. & Birge, R. B. Ligand activation of TAM family receptors—implications for tumor biology and therapeutic response. Cancers 8, 107 (2016).

    Article 

    Google Scholar
     

  • Lemke, G. Biology of the TAM receptors. Cold Spring Harb. Perspect. Biol. 5, a009076 (2013).

    Article 

    Google Scholar
     

  • Dutta, S. & Sengupta, P. Men and mice: relating their ages. Life Sci. 152, 244–248 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Grzelak, C. A. et al. Elimination of fluorescent protein immunogenicity permits modeling of metastasis in immune-competent settings. Cancer Cell 40, 1–2 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

    MathSciNet 
    CAS 
    Article 
    ADS 

    Google Scholar
     



  • Source link