• Delany, M. E. & Bazley, E. N. Acoustical properties of fibrous absorbent materials. Appl. Acoust. 3, 105–116 (1970).


    Google Scholar
     

  • Tang, X. & Yan, X. Acoustic energy absorption properties of fibrous materials: A review. Compos. Part A 101, 360–380 (2017).

    CAS 

    Google Scholar
     

  • Kozlov, A. S., Baumgart, J., Risler, T., Versteegh, C. P. C. & Hudspeth, A. J. Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale. Nature 474, 376–379 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, J. et al. Smart textile‐integrated microelectronic systems for wearable applications. Adv. Mater. 32, 1901958 (2019).


    Google Scholar
     

  • Abouraddy, A. F. et al. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 6, 336–347 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, W. et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater. Today 35, 168–194 (2020).

    CAS 

    Google Scholar
     

  • Weng, W. et al. A route toward smart system integration: from fiber design to device construction. Adv. Mater. 32, 1902301 (2020).

    CAS 

    Google Scholar
     

  • Chen, G., Li, Y., Bick, M. & Chen, J. Smart textiles for electricity generation. Chem. Rev. 120, 3668–3720 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Khudiyev, T. et al. 100-m-long thermally drawn supercapacitor fibers with applications to 3D printing and textiles. Adv. Mater. 32, 2004971 (2020).

    CAS 

    Google Scholar
     

  • Rein, M. et al. Diode fibres for fabric-based optical communications. Nature 560, 214–218 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. A. et al. Dynamic gating of infrared radiation in a textile. Science 363, 619–623 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsu, P. C. et al. Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, B. et al. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol. 16, 1342–1348 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, X. et al. Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Loke, G. et al. Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 12, 3317 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Egusa, S. et al. Multimaterial piezoelectric fibres. Nat. Mater. 9, 643–648 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chocat, N. et al. Piezoelectric fibers for conformal acoustics. Adv. Mater. 24, 5327–5332 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Fay, J. P., Puria, S. & Steele, C. R. The discordant eardrum. Proc. Natl Acad. Sci. USA 103, 19743–19748 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu, Y. et al. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv. Mater. 30, 1707251 (2018).


    Google Scholar
     

  • Acosta, M. et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 4, 041305 (2017).

    ADS 

    Google Scholar
     

  • Setiadi, D., Binnie, T. D., Regtien, P. & Wübbenhorst, M. Poling of VDF/TrFE copolymers using a step-wise method. In 9th Int. Symp. Electrets (ISE) (eds Xia, Z. & Zhang, H.) 831–835 (IEEE, 1996).

  • Zhang, Y., Bowen, C. R. & Deville, S. Ice-templated poly(vinylidene fluoride) ferroelectrets. Soft Matter 15, 825–832 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Safari, A. & Akdoğan, E. K. (eds) Piezoelectric and Acoustic Materials for Transducer Applications (Springer, 2008).

  • Lang, C., Fang, J., Shao, H., Ding, X. & Lin, T. High-sensitivity acoustic sensors from nanofibre webs. Nat. Commun. 7, 11108 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, S. et al. Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones. Sci. Adv. 4, eaas8772 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, A., Abas, Z., Soo Kim, H. & Oh, I. K. Piezoelectric thin films: an integrated review of transducers and energy harvesting. Smart Mater. Struct. 25, 053002 (2016).

    ADS 

    Google Scholar
     

  • Kinsler, L., Frey, A., Coppens, A. & Sanders, J. Fundamentals of Acoustics 4th edn (Wiley, 2000).

  • Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, J., Chen, J. & Lee, P. S. Functional fibers and fabrics for soft robotics, wearables, and human–robot interface. Adv. Mater. 33, 2002640 (2021).

    CAS 

    Google Scholar
     

  • Loke, G. et al. Computing fabrics. Matter 2, 786–788 (2020).


    Google Scholar
     

  • Wang, W., Yu, A., Zhai, J. & Wang, Z. L. Recent progress of functional fiber and textile triboelectric nanogenerators: towards electricity power generation and intelligent sensing. Adv. Fiber Mater.3, 394–412 (2021).

    CAS 

    Google Scholar
     

  • Ahmed, A., Hossain, M. M., Adak, B. & Mukhopadhyay, S. Recent advances in 2D MXene integrated smart-textile interfaces for multifunctional applications. Chem. Mater. 32, 10296–10320 (2020).

    CAS 

    Google Scholar
     

  • Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).

    ADS 

    Google Scholar
     

  • Han, M. et al. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electron. 2, 26–35 (2019).


    Google Scholar
     

  • Yang, G.-Z. et al. The grand challenges of Science Robotics. Sci. Rob. 3, eaar7650 (2018).


    Google Scholar
     

  • Huang, Y. et al. Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure β crystals. Nat. Commun. 12, 675 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, K., Godfroid, T., Robert, D. & Preumont, A. Adaptive shell spherical reflector actuated with PVDF-TrFe thin film strain actuators. Actuators 10, 7 (2021).


    Google Scholar
     

  • Wang, K., Alaluf, D., Rodrigues, G. & Preumont, A. Precision shape control of ultra-thin shells with strain actuators. J. Appl. Comput. Mech. 7, 1130–1137 (2021).


    Google Scholar
     

  • Guo, S., Duan, X., Xie, M., Aw, K. C. & Xue, Q. Composites, fabrication and application of polyvinylidene fluoride for flexible electromechanical devices: a review. Micromachines 11, 1076 (2020).

    PubMed Central 

    Google Scholar
     

  • Kim, H., Fernando, T., Li, M., Lin, Y. & Tseng, T. L. B. Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. J. Compos. Mater. 52, 197–206 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Kim, H. et al. Increased piezoelectric response in functional nanocomposites through multiwall carbon nanotube interface and fused-deposition modeling three-dimensional printing. MRS Commun. 7, 960–966 (2017).

    CAS 

    Google Scholar
     

  • Bodkhe, S., Turcot, G., Gosselin, F. P. & Therriault, D. One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures. ACS Appl. Mater. Interfaces 9, 20833–20842 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Pi, Z., Zhang, J., Wen, C., Zhang, Z.-b & Wu, D. Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film. Nano Energy 7, 33–41 (2014).

    CAS 

    Google Scholar
     

  • Baur, C. et al. Enhanced piezoelectric performance from carbon fluoropolymer nanocomposites. J. Appl. Phys. 112, 124104 (2012).

    ADS 

    Google Scholar
     

  • Zeng, R., Kwok, K. W., Chan, H. L. W. & Choy, C. L. Longitudinal and transverse piezoelectric coefficients of lead zirconate titanate/vinylidene fluoride-trifluoroethylene composites with different polarization states. J. Appl. Phys. 92, 2674–2679 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Omote, K., Ohigashi, H. & Koga, K. Temperature dependence of elastic, dielectric, and piezoelectric properties of “single crystalline” films of vinylidene fluoride trifluoroethylene copolymer. J. Appl. Phys. 81, 2760–2769 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • Wang, H., Zhang, Q. M., Cross, L. E. & Sykes, A. O. Piezoelectric, dielectric, and elastic properties of poly(vinylidene fluoride/trifluoroethylene). J. Appl. Phys. 74, 3394–3398 (1993).

    ADS 
    CAS 

    Google Scholar
     



  • Source link

    Invest In Films & Earn Yearly

    Invest in films & earn yearly

    initial deposit returned + 25% min on top

    + 50% return on royalties for life

    This will close in 20 seconds