• Xu, C. S. et al. Enhanced FIB-SEM systems for large-volume 3D imaging. eLife 6, e25916 (2017).

    Article 

    Google Scholar
     

  • Xu, C. S., Pang, S., Hayworth, K. J. & Hess, H. F. In Volume Microscopy Neuromethods vol. 155 (eds Wacker, I. et al.) 221–243 (Humana Press, 2020).

  • Terasaki, M. et al. Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs. Cell 154, 285–296 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Ben-Moshe, S. & Itzkovitz, S. Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. 16, 395–410 (2019).

    Article 

    Google Scholar
     

  • Lee, A. H., Chu, G. C., Iwakoshi, N. N. & Glimcher, L. H. XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. EMBO J. 24, 4368–4380 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Zirkin, B. R. & Papadopoulos, V. Leydig cells: formation, function, and regulation. Biol. Reprod. 99, 101–111 (2018).

    Article 

    Google Scholar
     

  • Valm, A. M. et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546, 162–167 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lee, J. E., Cathey, P. I., Wu, H., Parker, R. & Voeltz, G. K. Endoplasmic reticulum contact sites regulate the dynamics of membraneless organelles. Science 367, eaay7108 (2020).

    CAS 
    Article 

    Google Scholar
     

  • West, M., Zurek, N., Hoenger, A. & Voeltz, G. K. A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. J. Cell Biol. 193, 333–346 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Nixon-Abell, J. et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354, aaf3928 (2016).

    Article 

    Google Scholar
     

  • Heinrich, L. et al. Whole-cell organelle segmentation in volume electron microscopy. Nature 599, 141–146 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Goyal, U. & Blackstone, C. Untangling the web: mechanisms underlying ER network formation. Biochim. Biophys. Acta 1833, 2492–2498 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Shibata, Y. et al. Mechanisms determining the morphology of the peripheral ER. Cell 143, 774–788 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Chen, S., Novick, P. & Ferro-Novick, S. ER structure and function. Curr. Opin. Cell Biol. 25, 428–433 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Westrate, L. M., Lee, J. E., Prinz, W. A. & Voeltz, G. K. Form follows function: the importance of endoplasmic reticulum shape. Annu. Rev. Biochem. 84, 791–811 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Lynes, E. M. & Simmen, T. Urban planning of the endoplasmic reticulum (ER): how diverse mechanisms segregate the many functions of the ER. Biochim. Biophys. Acta 1813, 1893–1905 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Voeltz, G. K., Prinz, W. A., Shibata, Y., Rist, J. M. & Rapoport, T. A. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124, 573–586 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Sandoz, P. A. & van der Goot, F. G. How many lives does CLIMP-63 have? Biochem. Soc. Trans. 43, 222–228 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Shen, B. et al. Calumenin-1 interacts with Climp63 to cooperatively determine the luminal width and distribution of endoplasmic reticulum sheets. iScience 22, 70–80 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, H. & Hu, J. Shaping the endoplasmic reticulum into a social network. Trends Cell Biol. 26, 934–943 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Arruda, A. P. et al. Chronic enrichment of hepatic endoplasmic reticulum–mitochondria contact leads to mitochondrial dysfunction in obesity. Nat. Med. 20, 1427–1435 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Fu, S. et al. Phenotypic assays identify azoramide as a small-molecule modulator of the unfolded protein response with antidiabetic activity. Sci. Transl. Med. 7, 292ra98 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hotamisligil, G. S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Fu, S. et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473, 528–531 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Arruda, A. P. et al. Defective STIM-mediated store operated Ca2+ entry in hepatocytes leads to metabolic dysfunction in obesity. eLife 6, e29968 (2017).

    Article 

    Google Scholar
     

  • Shibata, Y. et al. The reticulon and DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum. J. Biol. Chem. 283, 18892–18904 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Akie, T. E. & Cooper, M. P. Determination of fatty acid oxidation and lipogenesis in mouse primary hepatocytes. J. Vis. Exp. 2015, e52982 (2015).


    Google Scholar
     

  • Margolis, R. N., Cardell, R. R. & Curnow, R. T. Association of glycogen synthase phosphatase and phosphorylase phosphatase activities with membranes of hepatic smooth endoplasmic reticulum. J. Cell Biol. 83, 348–356 (1979).

    CAS 
    Article 

    Google Scholar
     

  • Iudin, A., Korir, P. K., Salavert-Torres, J., Kleywegt, G. J. & Patwardhan, A. EMPIAR: a public archive for raw electron microscopy image data. Nat. Methods 13, 387–388 (2016).

    CAS 
    Article 

    Google Scholar
     



  • Source link