• Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cassa, C. A. et al. Estimating the selective effects of heterozygous protein-truncating variants from human exome data. Nat. Genet. 49, 806–810 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, R. L. et al. A structural variation reference for medical and population genetics. Nature 581, 444–451 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Weghorn, D. et al. Applicability of the mutation-selection balance model to population genetics of heterozygous protein-truncating variants in humans. Mol. Biol. Evol. 36, 1701–1710 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darwin, C. The Descent of Man, and Selection in Relation to Sex (A. L. Burt, 1874); https://doi-org.ezp.lib.cam.ac.uk/10.5962/bhl.title.16749

  • Ganna, A. et al. Ultra-rare disruptive and damaging mutations influence educational attainment in the general population. Nat. Neurosci. 19, 1563–1565 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Männik, K. et al. Copy number variations and cognitive phenotypes in unselected populations. JAMA 313, 2044–2054 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huguet, G. et al. Measuring and estimating the effect sizes of copy number variants on general intelligence in community-based samples. JAMA Psychiatry 75, 447–457 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganna, A. et al. Quantifying the impact of rare and ultra-rare coding variation across the phenotypic spectrum. Am. J. Hum. Genet. 102, 1204–1211 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szustakowski, J. D. et al. Advancing human genetics research and drug discovery through exome sequencing of the UK Biobank. Nat. Genet. 53, 942–948 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Barthold, J. A., Myrskylä, M. & Jones, O. R. Childlessness drives the sex difference in the association between income and reproductive success of modern Europeans. Evol. Hum. Behav. 33, 628–638 (2012).


    Google Scholar
     

  • Dudel, C. & Klüsener, S. Estimating men’s fertility from vital registration data with missing values. Popul. Stud. 73, 439–449 (2019).


    Google Scholar
     

  • Birth Summary Tables, England and Wales 2019 (Office of National Statistics, 2020).

  • Oud, M. S. et al. A systematic review and standardized clinical validity assessment of male infertility genes. Hum. Reprod. 34, 932–941 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bult, C. J. et al. Mouse Genome Database (MGD) 2019. Nucleic Acids Res. 47, D801–D806 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Lopes, A. M. et al. Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes, including the gene DMRT1. PLoS Genet. 9, e1003349 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skjaerven, R., Wilcox, A. J. & Lie, R. T. A population-based study of survival and childbearing among female subjects with birth defects and the risk of recurrence in their children. N. Engl. J. Med. 340, 1057–1062 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Lie, R. T., Wilcox, A. J. & Skjaerven, R. Survival and reproduction among males with birth defects and risk of recurrence in their children. JAMA 285, 755–760 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Power, R. A. et al. Fecundity of patients with schizophrenia, autism, bipolar disorder, depression, anorexia nervosa, or substance abuse vs their unaffected siblings. JAMA Psychiatry 70, 22–30 (2013).

    PubMed 

    Google Scholar
     

  • Allen, M. S. The role of personality in sexual and reproductive health. Curr. Dir. Psychol. Sci. 28, 581–586 (2019).

    MathSciNet 

    Google Scholar
     

  • Buss, D. M. et al. International preferences in selecting mates: a study of 37 cultures. J. Cross. Cult. Psychol. 21, 5–47 (1990).


    Google Scholar
     

  • Pawłowski, B. & Dunbar, R. I. Impact of market value on human mate choice decisions. Proc. Biol. Sci. 266, 281–285 (1999).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buss, D. M. & Schmitt, D. P. Mate preferences and their behavioral manifestations. Annu. Rev. Psychol. 70, 77–110 (2019).

    PubMed 

    Google Scholar
     

  • Fieder, M., Huber, S. & Bookstein, F. L. Socioeconomic status, marital status and childlessness in men and women: an analysis of census data from six countries. J. Biosoc. Sci. 43, 619–635 (2011).

    PubMed 

    Google Scholar
     

  • Nettle, D. & Pollet, T. V. Natural selection on male wealth in humans. Am. Nat. 172, 658–666 (2008).

    PubMed 

    Google Scholar
     

  • Miettinen, A., Rotkirch, A., Szalma, I., Donno, A. & Tanturri, M.-L. Increasing Childlessness in Europe: Time Trends and Country Differences Working Paper 33 (Family and Societies, 2015).

  • Jalovaara, M. et al. Education, Gender, and Cohort Fertility in the Nordic Countries. Eur. J. Popul. 35, 563–586 (2019).

    PubMed 

    Google Scholar
     

  • Fieder, M. & Huber, S. The effects of sex and childlessness on the association between status and reproductive output in modern society. Evol. Hum. Behav. 28, 392–398 (2007).


    Google Scholar
     

  • GTEx Consortium. The Genotype–Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).


    Google Scholar
     

  • Trivers, R. in Sexual Selection and the Descent of Man (ed. Campbell, B.) (Aldine, 1972).

  • Bateman, A. J. Intra-sexual selection in Drosophila. Heredity 2, 349–368 (1948).

    CAS 
    PubMed 

    Google Scholar
     

  • Parker, G. A. & Pizzari, T. in Current Perspectives on Sexual Selection 119–163 (Springer, 2015).

  • Kolk, M. & Barclay, K. Cognitive ability and fertility among Swedish men born 1951-1967: evidence from military conscription registers. Proc. Biol. Sci. 286, 20190359 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kendall, K. M. et al. Cognitive performance among carriers of pathogenic copy number variants: analysis of 152,000 UK Biobank subjects. Biol. Psychiatry 82, 103–110 (2017).

    PubMed 

    Google Scholar
     

  • Davis, K. A. S. et al. Mental health in UK Biobank—development, implementation and results from an online questionnaire completed by 157,366 participants: a reanalysis. BJPsych Open 6, e18 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tyrrell, J. et al. Genetic predictors of participation in optional components of UK Biobank. Nat. Commun. 12, 886 (2021).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Stefansson, H. et al. CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature 505, 361–366 (2014).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339–1348 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Barban, N. et al. Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nat. Genet. 48, 1462–1472 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verweij, R. M. et al. Sexual dimorphism in the genetic influence on human childlessness. Eur. J. Hum. Genet. 25, 1067–1074 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clark, D. W. et al. Associations of autozygosity with a broad range of human phenotypes. Nat. Commun. 10, 4957 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Stanley, K. E. et al. Causal genetic variants in stillbirth. N. Engl. J. Med. 383, 1107–1116 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaplanis, J. et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 586, 757–762 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Girirajan, S. et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N. Engl. J. Med. 367, 1321–1331 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costain, G., Chow, E. W. C., Silversides, C. K. & Bassett, A. S. Sex differences in reproductive fitness contribute to preferential maternal transmission of 22q11.2 deletions. J. Med. Genet. 48, 819–824 (2011).

    PubMed 

    Google Scholar
     

  • De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berrington, A. in Demographic Research Monographs 57–76 (Springer, 2017).

  • Betzig, L. Means, variances, and ranges in reproductive success: comparative evidence. Evol. Hum. Behav. 33, 309–317 (2012).


    Google Scholar
     

  • Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Wang, K. et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 17, 1665–1674 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macé, A. et al. New quality measure for SNP array based CNV detection. Bioinformatics 32, 3298–3305 (2016).

    PubMed 

    Google Scholar
     

  • Liaw, A. & Wiener, M. Classification and regression by randomforest. R News 2, 285 (2002).


    Google Scholar
     

  • Di Angelantonio, E. et al. Efficiency and safety of varying the frequency of whole blood donation (INTERVAL): a randomised trial of 45,000 donors. Lancet 390, 2360–2371 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fromer, M. et al. Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth. Am. J. Hum. Genet. 91, 597–607 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Backenroth, D. et al. CANOES: detecting rare copy number variants from whole exome sequencing data. Nucleic Acids Res. 42, e97 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Packer, J. S. et al. CLAMMS: a scalable algorithm for calling common and rare copy number variants from exome sequencing data. Bioinformatics 32, 133–135 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Crawford, K. et al. Medical consequences of pathogenic CNVs in adults: analysis of the UK Biobank. J. Med. Genet. 56, 131–138 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • McLaren, W. et al. The Ensembl variant effect predictor. Genome Biol. 17, 122 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rentzsch, P., Schubach, M., Shendure, J. & Kircher, M. CADD-splice-improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med. 13, 31 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Samocha, K. E. et al. Regional missense constraint improves variant deleteriousness prediction. Preprint at https://doi.org/10.1101/148353 (2017).

  • Zhao, H. et al. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics 30, 1006–1007 (2014).

    PubMed 

    Google Scholar
     

  • Kersey, P. J. et al. Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids Res. 44, D574–D580 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Van Hout, C. V. et al. Exome sequencing and characterization of 49,960 individuals in the UK Biobank. Nature 586, 749–756 (2020).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Nait Saada, J. et al. Identity-by-descent detection across 487,409 British samples reveals fine scale population structure and ultra-rare variant associations. Nat. Commun. 11, 6130 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balduzzi, S., Rücker, G. & Schwarzer, G. How to perform a meta-analysis with R: a practical tutorial. Evid. Based. Ment. Health 22, 153–160 (2019).

    PubMed 

    Google Scholar
     

  • Population and Welfare Department. Multi-Generation Register 2016: A Description of Contents and Quality (Statistics Sweden, 2017).

  • Carlstedt, B. Cognitive Abilities—Aspects of Structure, Process and Measurement. Doctoral thesis, Univ. of Gothenburg (2000).

  • Hällsten, M. Inequality across three and four generations in egalitarian Sweden: 1st and 2nd cousin correlations in socio-economic outcomes. Res. Soc. Stratif. Mobil. 35, 19–33 (2014).


    Google Scholar
     

  • Mårdberg, B. & Carlstedt, B. Swedish Enlistment Battery (SEB): construct validity and latent variable estimation of cognitive abilities by the CAT‐SEB. Int. J. Sel. 6, 107–114 (1998).


    Google Scholar
     

  • Rönnlund, M., Carlstedt, B., Blomstedt, Y., Nilsson, L.-G. & Weinehall, L. Secular trends in cognitive test performance: Swedish conscript data 1970–1993. Intelligence 41, 19–24 (2013).


    Google Scholar
     



  • Source link