• Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article 

    Google Scholar
     

  • Shor, P. W. Fault-tolerant quantum computation. In Proc. 37th Conference on Foundations of Computer Science 56 pp (IEEE, 1996).

  • Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Raussendorf, R. & Harrington, J. Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98, 190504 (2007).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Bombin, H. & Martin-Delgado, M. A. Quantum measurements and gates by code deformation. J. Phys. A Math. Theor. 42, 095302 (2009).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Andersen, C. K. et al. Repeated quantum error detection in a surface code. Nat. Phys. 16, 875–880 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Marques, J. F. et al. Logical-qubit operations in an error-detecting surface code. Nat. Phys. 18, 80–86 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Chen, Z. et al. Exponential suppression of bit or phase errors with cyclic error correction. Nature 595, 383–387 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ryan-Anderson, C. et al. Realization of real-time fault-tolerant quantum error correction. Phys. Rev. X 11, 041058 (2021).

    CAS 

    Google Scholar
     

  • Bravyi, S. B. & Kitaev, A. Y. Quantum codes on a lattice with boundary. Preprint at https://arxiv.org/abs/quant-ph/9811052 (1998).

  • Wang, C., Harrington, J. & Preskill, J. Confinement-Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory. Ann. Phys. 303, 31–58 (2003).

    ADS 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Gottesman, D. Stabilizer Codes and Quantum Error Correction. PhD thesis, California Institute of Technology (1997).

  • Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307 (2015).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Moussa, O., Baugh, J., Ryan, C. A. & Laflamme, R. Demonstration of sufficient control for two rounds of quantum error correction in a solid state ensemble quantum information processor. Phys. Rev. Lett. 107, 160501 (2011).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Schindler, P. et al. Experimental repetitive quantum error correction. Science 332, 1059–1061 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Knill, E., Laflamme, R., Martinez, R. & Negrevergne, C. Benchmarking quantum computers: the five-qubit error correcting code. Phys. Rev. Lett. 86, 5811 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abobeih, M. H. et al. Fault-tolerant operation of a logical qubit in a diamond quantum processor. Preprint at https://arxiv.org/abs/2108.01646 (2021).

  • Egan, L. et al. Fault-tolerant control of an error-corrected qubit. Nature 598, 281–286 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hilder, J. et al. Fault-tolerant parity readout on a shuttling-based trapped-ion quantum computer. Phys. Rev. X 12, 011032 (2022).

    CAS 

    Google Scholar
     

  • Horsman, C., Fowler, A. G., Devitt, S. & Meter, R. V. Surface code quantum computing by lattice surgery. New J. Phys. 14, 123011 (2012).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu, L. et al. Quantum error correction and universal gate set operation on a binomial bosonic logical qubit. Nat. Phys. 15, 503–508 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368–372 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bombin, H. & Martin-Delgado, M. A. Optimal resources for topological two-dimensional stabilizer codes: comparative study. Phys. Rev. A 76, 012305 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Tomita, Y. & Svore, K. M. Low-distance surface codes under realistic quantum noise. Phys. Rev. A 90, 062320 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Strauch, F. W. et al. Quantum logic gates for coupled superconducting phase qubits. Phys. Rev. Lett. 91, 167005 (2003).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • DiCarlo, L. et al. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574–578 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Negirneac, V. et al. High-fidelity controlled-Z gate with maximal intermediate leakage operating at the speed limit in a superconducting quantum processor. Phys. Rev. Lett. 126, 220502 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Krinner, S. et al. Benchmarking coherent errors in controlled-phase gates due to spectator qubits. Phys. Rev. Appl. 14, 024042 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Negnevitsky, V. et al. Repeated multi-qubit readout and feedback with a mixed-species trapped-ion register. Nature 563, 527–531 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Andersen, C. K. et al. Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits. npj Quantum Inf. 5, 69 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Bultink, C. C. et al. Protecting quantum entanglement from leakage and qubit errors via repetitive parity measurements. Sci. Adv. 6, eaay3050 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aliferis, P. & Terhal, B. M. Fault-tolerant quantum computation for local leakage faults. Quantum Inf. Comput. 7, 139–156 (2007).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Fowler, A. G. Coping with qubit leakage in topological codes. Phys. Rev. A 88, 042308 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Ghosh, J. & Fowler, A. G. Leakage-resilient approach to fault-tolerant quantum computing with superconducting elements. Phys. Rev. A 91, 020302 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Suchara, M., Cross, A. W. & Gambetta, J. M. Leakage suppression in the toric code. Quantum Inf. Comput. 15, 997–1016 (2015).

    MathSciNet 

    Google Scholar
     

  • Varbanov, B. M. et al. Leakage detection for a transmon-based surface code. npj Quantum Inf. 6, 102 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Versluis, R. et al. Scalable quantum circuit and control for a superconducting surface code. Phys. Rev. Appl. 8, 034021 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • von Burg, V. et al. Quantum computing enhanced computational catalysis. Phys. Rev. Res. 3, 033055 (2021).

    Article 

    Google Scholar
     

  • Babbush, R. et al. Focus beyond quadratic speedups for error-corrected quantum advantage. PRX Quantum 2, 010103 (2021).

    Article 

    Google Scholar
     

  • Nigg, D. et al. Quantum computations on a topologically encoded qubit. Science 345, 302–305 (2014).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar
     

  • Trout, C. J. et al. Simulating the performance of a distance-3 surface code in a linear ion trap. New J. Phys. 20, 043038 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Landahl, A. J. & Ryan-Anderson, C. Quantum computing by color-code lattice surgery. Preprint at https://arxiv.org/abs/1407.5103 (2014).

  • Gutiérrez, M., Müller, M. & Bermúdez, A. Transversality and lattice surgery: exploring realistic routes toward coupled logical qubits with trapped-ion quantum processors. Phys. Rev. A 99, 022330 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Stephens, A. M. Fault-tolerant thresholds for quantum error correction with the surface code. Phys. Rev. A 89, 022321 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • McEwen, M. et al. Removing leakage-induced correlated errors in superconducting quantum error correction. Nat. Commun. 12, 1761 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Strand, J. D. et al. First-order sideband transitions with flux-driven asymmetric transmon qubits. Phys. Rev. B 87, 220505 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Hutchings, M. D. et al. Tunable superconducting qubits with flux-independent coherence. Phys. Rev. Appl. 8, 044003 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Walter, T. et al. Rapid high-fidelity single-shot dispersive readout of superconducting qubits. Phys. Rev. Appl. 7, 054020 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Heinsoo, J. et al. Rapid high-fidelity multiplexed readout of superconducting qubits. Phys. Rev. Appl. 10, 034040 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sank, D. et al. Measurement-induced state transitions in a superconducting qubit: beyond the rotating wave approximation. Phys. Rev. Lett. 117, 190503 (2016).

    ADS 
    MathSciNet 
    PubMed 
    Article 

    Google Scholar
     

  • Wallraff, A. et al. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • O’Brien, T. E., Tarasinski, B. & DiCarlo, L. Density-matrix simulation of small surface codes under current and projected experimental noise. npj Quantum Inf. 3, 39 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Edmonds, J. Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Spitz, S. T., Tarasinski, B., Beenakker, C. W. J. & O’Brien, T. E. Adaptive weight estimator for quantum error correction in a time-dependent environment. Adv. Quantum Technol. 1, 1800012 (2018).

    Article 

    Google Scholar
     



  • Source link