• Collins, F. M. Cellular antimicrobial immunity. CRC Crit. Rev. Microbiol. 7, 27–91 (1978).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mackaness, G. B. Resistance to intracellular infection. J. Infect. Dis. 123, 439–445 (1971).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Albrecht, M. & Arck, P. C. Vertically transferred immunity in neonates: mothers, mechanisms and mediators. Front. Immunol. 11, 555 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Robbins, J. R. & Bakardjiev, A. I. Pathogens and the placental fortress. Curr. Opin. Microbiol. 15, 36–43 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Surolia, I. et al. Functionally defective germline variants of sialic acid acetylesterase in autoimmunity. Nature 466, 243–247 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Clark, E. A. & Giltiay, N. V. CD22: a regulator of innate and adaptive B Cell responses and autoimmunity. Front. Immunol. 9, 2235 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mahajan, V. S. & Pillai, S. Sialic acids and autoimmune disease. Immunol. Rev. 269, 145–161 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kollmann, T. R., Marchant, A. & Way, S. S. Vaccination strategies to enhance immunity in neonates. Science 368, 612–615 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Chávez-Arroyo, A. & Portnoy, D. A. Why is Listeria monocytogenes such a potent inducer of CD8+ T-cells? Cell Microbiol. 22, e13175 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Radoshevich, L. & Cossart, P. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat. Rev. Microbiol. 16, 32–46 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marchant, A. et al. Maternal immunisation: collaborating with mother nature. Lancet Infect. Dis. 17, e197–e208 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Fouda, G. G., Martinez, D. R., Swamy, G. K. & Permar, S. R. The Impact of IgG transplacental transfer on early life immunity. Immunohorizons 2, 14–25 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kaufmann, S. H., Hug, E. & De Libero, G. Listeria monocytogenes-reactive T lymphocyte clones with cytolytic activity against infected target cells. J. Exp. Med. 164, 363–368 (1986).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bishop, D. K. & Hinrichs, D. J. Adoptive transfer of immunity to Listeria monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. J Immunol. 139, 2005–2009 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Mielke, M. E., Ehlers, S. & Hahn, H. T-cell subsets in delayed-type hypersensitivity, protection, and granuloma formation in primary and secondary Listeria infection in mice: superior role of Lyt-2+ cells in acquired immunity. Infect. Immun. 56, 1920–1925 (1988).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bruhns, P. & Jönsson, F. Mouse and human FcR effector functions. Immunol. Rev. 268, 25–51 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Anthony, R. M., Wermeling, F. & Ravetch, J. V. Novel roles for the IgG Fc glycan. Ann. N. Y. Acad. Sci. 1253, 170–180 (2012).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • van de Bovenkamp, F. S., Hafkenscheid, L., Rispens, T. & Rombouts, Y. The emerging importance of IgG Fab glycosylation in immunity. J. Immunol. 196, 1435–1441 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Traving, C. & Schauer, R. Structure, function and metabolism of sialic acids. Cell. Mol. Life Sci. 54, 1330–1349 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Langereis, M. A. et al. Complexity and diversity of the mammalian sialome revealed by nidovirus virolectins. Cell Rep. 11, 1966–1978 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Srivastava, S. et al. Development and applications of sialoglycan-recognizing probes (SGRPs) with defined specificities: exploring the dynamic mammalian sialoglycome. Preprint at bioRxiv https://doi.org/10.1101/2021.05.28.446202 (2021).

  • Ravindranath, M. H., Higa, H. H., Cooper, E. L. & Paulson, J. C. Purification and characterization of an O-acetylsialic acid-specific lectin from a marine crab Cancer antennarius. J. Biol. Chem. 260, 8850–8856 (1985).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Crocker, P. R., Paulson, J. C. & Varki, A. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7, 255–266 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Krištić, J. et al. Profiling and genetic control of the murine immunoglobulin G glycome. Nat. Chem. Biol. 14, 516–524 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Tsai, S. et al. Transcriptional profiling of human placentas from pregnancies complicated by preeclampsia reveals disregulation of sialic acid acetylesterase and immune signalling pathways. Placenta 32, 175–182 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Medzihradszky, K. F., Kaasik, K. & Chalkley, R. J. Characterizing sialic acid variants at the glycopeptide level. Anal. Chem. 87, 3064–3071 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Melo-Braga, M. N., Carvalho, M. B., Emiliano, M. C., Ferreira & Felicori, L. F. New insights of glycosylation role on variable domain of antibody structures. Preprint at bioRxiv https://doi.org/10.1101/2021.04.11.439351 (2021).

  • Sjoberg, E. R., Powell, L. D., Klein, A. & Varki, A. Natural ligands of the B cell adhesion molecule CD22 beta can be masked by 9-O-acetylation of sialic acids. J. Cell Biol. 126, 549–562 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Blixt, O., Collins, B. E., van den Nieuwenhof, I. M., Crocker, P. R. & Paulson, J. C. Sialoside specificity of the siglec family assessed using novel multivalent probes: identification of potent inhibitors of myelin-associated glycoprotein. J. Biol. Chem. 278, 31007–31019 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brinkman-Van der Linden, E. C. et al. Loss of N-glycolylneuraminic acid in human evolution. Implications for sialic acid recognition by siglecs. J. Biol. Chem. 275, 8633–8640 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tedder, T. F. B10 cells: a functionally defined regulatory B cell subset. J. Immunol. 194, 1395–1401 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yanaba, K. et al. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28, 639–650 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Horikawa, M. et al. Regulatory B cell (B10 Cell) expansion during Listeria infection governs innate and cellular immune responses in mice. J. Immunol. 190, 1158–1168 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee, C. C. & Kung, J. T. Marginal zone B cell is a major source of Il-10 in Listeria monocytogenes susceptibility. J. Immunol. 189, 3319–3327 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, D. et al. IL-10-dependent crosstalk between murine marginal zone B cells, macrophages, and CD8α. Immunity 51, 64–76 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Torres, D. et al. Toll-like receptor 2 is required for optimal control of Listeria monocytogenes infection. Infect. Immun. 72, 2131–2139 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Edelson, B. T., Cossart, P. & Unanue, E. R. Cutting edge: paradigm revisited: antibody provides resistance to Listeria infection. J. Immunol. 163, 4087–4090 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Séïté, J. F. et al. IVIg modulates BCR signaling through CD22 and promotes apoptosis in mature human B lymphocytes. Blood 116, 1698–1704 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Adachi, T. et al. CD22 serves as a receptor for soluble IgM. Eur. J. Immunol. 42, 241–247 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Müller, J. et al. CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling. Proc. Natl Acad. Sci. USA 110, 12402–12407 (2013).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Kawasaki, N., Rademacher, C. & Paulson, J. C. CD22 regulates adaptive and innate immune responses of B cells. J. Innate Immun. 3, 411–419 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Casadevall, A. Antibody-based vaccine strategies against intracellular pathogens. Curr. Opin. Immunol. 53, 74–80 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hatta, Y. et al. Identification of the gene variations in human CD22. Immunogenetics 49, 280–286 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hunter, C. D. et al. Human neuraminidase isoenzymes show variable activities for 9-O-acetyl-sialoside substrates. ACS Chem. Biol. 13, 922–932 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Varki, A., Hooshmand, F., Diaz, S., Varki, N. M. & Hedrick, S. M. Developmental abnormalities in transgenic mice expressing a sialic acid-specific 9-O-acetylesterase. Cell 65, 65–74 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rizzuto, G. et al. Establishment of fetomaternal tolerance through glycan-mediated B cell suppression. Nature 603, 497–502 (2022).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Fowler, K. B. et al. The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N. Engl. J. Med. 326, 663–667 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boppana, S. B., Rivera, L. B., Fowler, K. B., Mach, M. & Britt, W. J. Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N. Engl. J. Med. 344, 1366–1371 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brown, Z. A. et al. Effect of serologic status and cesarean delivery on transmission rates of herpes simplex virus from mother to infant. JAMA 289, 203–209 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • Hafner, L. et al. Listeria monocytogenes faecal carriage is common and depends on the gut microbiota. Nat. Commun. 12, 6826 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Hennet, T., Chui, D., Paulson, J. C. & Marth, J. D. Immune regulation by the ST6Gal sialyltransferase. Proc. Natl Acad. Sci. USA 95, 4504–4509 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Haeussler, M. et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 17, 148 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Way, S. S., Kollmann, T. R., Hajjar, A. M. & Wilson, C. B. Cutting edge: protective cell-mediated immunity to Listeria monocytogenes in the absence of myeloid differentiation factor 88. J. Immunol. 171, 533–537 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Elahi, S. et al. Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection. Nature 504, 158–162 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Shao, T. Y. et al. Commensal Candida albicans positively calibrates systemic Th17 immunological responses. Cell Host Microbe 25, 404–417 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Turner, L. H. et al. Preconceptual Zika virus asymptomatic infection protects against secondary prenatal infection. PLoS Pathog. 13, e1006684 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wasik, B. R. et al. Distribution of O-acetylated sialic acids among target host tissues for influenza virus. mSphere 2, e00379-16 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     



  • Source link