• Legris, M., Ince, Y. C. & Fankhauser, C. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat. Commun. 10, 5219 (2019).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Burgie, E. S. & Vierstra, R. D. Phytochromes: an atomic perspective on photoactivation and signaling. Plant Cell 26, 4568–4583 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Auldridge, M. E. & Forest, K. T. Bacterial phytochromes: more than meets the light. Crit. Rev. Biochem. Mol. Biol. 46, 67–88 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Rockwell, N. C., Su, Y. S. & Lagarias, J. C. Phytochrome structure and signaling mechanisms. Annu. Rev. Plant Biol. 57, 837–858 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franklin, K. A. & Quail, P. H. Phytochrome functions in Arabidopsis development. J. Exp. Bot. 61, 11–24 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Jung, J. H. et al. Phytochromes function as thermosensors in Arabidopsis. Science 354, 886–889 (2016).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Legris, M. et al. Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354, 897–900 (2016).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Burgie, E. S. et al. Differing biophysical properties underpin the unique signaling potentials within the plant phytochrome families. Proc. Natl Acad. Sci. USA 118, e2105649118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Essen, L. O., Mailliet, J. & Hughes, J. The structure of a complete phytochrome sensory module in the Pr ground state. Proc. Natl Acad. Sci. USA 105, 14709–14714 (2008).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Wagner, J. R., Brunzelle, J. S., Forest, K. T. & Vierstra, R. D. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature 438, 325–331 (2005).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Yang, X., Kuk, J. & Moffat, K. Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photoconversion and signal transduction. Proc. Natl Acad. Sci. USA 105, 14715–14720 (2008).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Takala, H. et al. Signal amplification and transduction in phytochrome photosensors. Nature 509, 245–248 (2014).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Burgie, E. S., Zhang, J. & Vierstra, R. D. Crystal structure of Deinococcus phytochrome in the photoactivated state reveals a cascade of structural rearrangements during photoconversion. Structure 24, 448–457 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Burgie, E. S. et al. Photoreversible interconversion of a phytochrome photosensory module in the crystalline state. Proc. Natl Acad. Sci. USA 117, 300–307 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Isaksson, L. et al. Signaling mechanism of phytochromes in solution. Structure 29, 151–160 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Anders, K., Daminelli-Widany, G., Mroginski, M. A., von Stetten, D. & Essen, L. O. Structure of the cyanobacterial phytochrome 2 photosensor implies a tryptophan switch for phytochrome signaling. J. Biol. Chem. 288, 35714–35725 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhoo, S. H., Davis, S. J., Walker, J., Karniol, B. & Vierstra, R. D. Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature 414, 776–779 (2001).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Yeh, K. C., Wu, S. H., Murphy, J. T. & Lagarias, J. C. A cyanobacterial phytochrome two-component light sensory system. Science 277, 1505–1508 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, F. W. et al. Phytochrome diversity in green plants and the origin of canonical plant phytochromes. Nat. Commun. 6, 7852 (2015).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Rockwell, N. C. & Lagarias, J. C. Phytochrome evolution in 3D: deletion, duplication, and diversification. New Phytol. 225, 2283–2300 (2020).

    PubMed 

    Google Scholar
     

  • Yeh, K. C. & Lagarias, J. C. Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc. Natl Acad. Sci. USA 95, 13976–13981 (1998).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Boylan, M. T. & Quail, P. H. Are the phytochromes protein kinases? Protoplasma 195, 12–17 (1996).

    CAS 

    Google Scholar
     

  • Elich, T. D. & Chory, J. Phytochrome: if it looks and smells like a histidine kinase, is it a histidine kinase? Cell 91, 713–716 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Ni, W. et al. A mutually assured destruction mechanism attenuates light signaling in Arabidopsis. Science 344, 1160–1164 (2014).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Buckley, C. E. et al. Reversible optogenetic control of subcellular protein localization in a live vertebrate embryo. Dev. Cell 36, 117–126 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chernov, K. G., Redchuk, T. A., Omelina, E. S. & Verkhusha, V. V. Near-infrared fluorescent proteins, biosensors, and optogenetic tools engineered from phytochromes. Chem. Rev. 117, 6423–6446 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Levskaya, A., Weiner, O. D., Lim, W. A. & Voigt, C. A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Shimizu-Sato, S., Huq, E., Tepperman, J. M. & Quail, P. H. A light-switchable gene promoter system. Nat. Biotechnol. 20, 1041–1044 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Krall, L. & Reed, J. W. The histidine kinase-related domain participates in phytochrome B function but is dispensable. Proc. Natl Acad. Sci. USA 97, 8169–8174 (2000).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Matsushita, T., Mochizuki, N. & Nagatani, A. Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. Nature 424, 571–574 (2003).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Burgie, E. S. et al. Photosensing and thermosensing by phytochrome B require both proximal and distal allosteric features within the dimeric photoreceptor. Sci. Rep. 7, 13648 (2017).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Burgie, E. S., Bussell, A. N., Walker, J. M., Dubiel, K. & Vierstra, R. D. Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome. Proc. Natl Acad. Sci. USA 111, 10179–10184 (2014).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Nagano, S. et al. Structural insights into photoactivation and signalling in plant phytochromes. Nat. Plants 6, 581–588 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Diensthuber, R. P., Bommer, M., Gleichmann, T. & Moglich, A. Full-length structure of a sensor histidine kinase pinpoints coaxial coiled coils as signal transducers and modulators. Structure 21, 1127–1136 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Mechanistic insights revealed by the crystal structure of a histidine kinase with signal transducer and sensor domains. PLoS Biol. 11, e1001493 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, Y. et al. Conformational dynamics of the essential sensor histidine kinase WalK. Acta Crystallogr. D 73, 793–803 (2017).

    CAS 

    Google Scholar
     

  • Casino, P., Rubio, V. & Marina, A. Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell 139, 325–336 (2009).


    Google Scholar
     

  • Lagarias, J. C. & Mercurio, F. M. Structure function studies on phytochrome. Identification of light-induced conformational changes in 124-kDa Avena phytochrome in vitro. J. Biol. Chem. 260, 2415–2423 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • Jones, A. M., Vierstra, R. D., Daniels, S. M. & Quail, P. The role of separate molecular domains in the structure of phytochrome from etiolated Avena sativa L. Planta 164, 501–516 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, H., Zhang, J., Vierstra, R. D. & Li, H. Quaternary organization of a phytochrome dimer as revealed by cryoelectron microscopy. Proc. Natl Acad. Sci. USA 107, 10872–10877 (2010).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Gourinchas, G. et al. Long-range allosteric signaling in red light-regulated diguanylyl cyclases. Sci. Adv. 3, e1602498 (2017).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Etzl, S., Lindner, R., Nelson, M. D. & Winkler, A. Structure-guided design and functional characterization of an artificial red light-regulated guanylate/adenylate cyclase for optogenetic applications. J. Biol. Chem. 293, 9078–9089 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mechaly, A. E., Sassoon, N., Betton, J. M. & Alzari, P. M. Segmental helical motions and dynamical asymmetry modulate histidine kinase autophosphorylation. PLoS Biol. 12, e1001776 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, A. Y. et al. Evidence that phytochrome functions as a protein kinase in plant light signalling. Nat. Commun. 7, 11545 (2016).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Klose, C., Nagy, F. & Schafer, E. Thermal reversion of plant phytochromes. Mol. Plant 13, 386–397 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Klose, C. et al. Systematic analysis of how phytochrome B dimerization determines its specificity. Nat. Plants 1, 15090 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Rensing, S. A., Sheerin, D. J. & Hiltbrunner, A. Phytochromes: more than meets the eye. Trends Plant Sci. 21, 543–546 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Kikis, E. A., Oka, Y., Hudson, M. E., Nagatani, A. & Quail, P. H. Residues clustered in the light-sensing knot of phytochrome B are necessary for conformer-specific binding to signaling partner PIF3. PLoS Genet. 5, e1000352 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ni, W. et al. PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3. Nat. Commun. 8, 15236 (2017).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     



  • Source link

    Invest In Films & Earn Yearly

    Invest in films & earn yearly

    initial deposit returned + 25% min on top

    + 50% return on royalties for life

    This will close in 20 seconds