• Lewis, R. L., Howes, A. & Singh, S. Computational rationality: linking mechanism and behavior through bounded utility maximization. Top. Cogn. Sci. 6, 279–311 (2014).

    PubMed 

    Google Scholar
     

  • Griffiths, T. L., Lieder, F. & Goodman, N. D. Rational use of cognitive resources: levels of analysis between the computational and the algorithmic. Top. Cogn. Sci. 7, 217–229 (2015).

    PubMed 

    Google Scholar
     

  • Gershman, S. J., Horvitz, E. J. & Tenenbaum, J. B. Computational rationality: a converging paradigm for intelligence in brains, minds, and machines. Science 349, 273–278 (2015).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Newell, A. & Simon, H. A. Human Problem Solving (Prentice Hall, 1972).

  • Russell, S. & Norvig, P. Artificial Intelligence: A Modern Approach 3rd edn (Prentice Hall, 2009).

  • Keramati, M., Smittenaar, P., Dolan, R. J. & Dayan, P. Adaptive integration of habits into depth-limited planning defines a habitual-goal–directed spectrum. Proc. Natl Acad. Sci. USA 113, 12868–12873 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huys, Q. J. M. et al. Bonsai trees in your head: how the Pavlovian system sculpts goal-directed choices by pruning decision trees. PLoS Comput. Biol. 8, e1002410 (2012).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huys, Q. J. M. et al. Interplay of approximate planning strategies. Proc. Natl Acad. Sci. USA 112, 3098–3103 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callaway, F. et al. Rational use of cognitive resources in human planning. Nat. Hum. Behav. https://doi.org/10.1038/s41562-022-01332-8 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Sezener, C. E., Dezfouli, A. & Keramati, M. Optimizing the depth and the direction of prospective planning using information values. PLoS Comput. Biol. 15, e1006827 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pezzulo, G., Donnarumma, F., Maisto, D. & Stoianov, I. Planning at decision time and in the background during spatial navigation. Curr. Opin. Behav. Sci. 29, 69–76 (2019).


    Google Scholar
     

  • Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Ann. Rev. Neurosci. 24, 167–202 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79, 217–240 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shenhav, A. et al. Toward a rational and mechanistic account of mental effort. Ann. Rev. Neurosci. 40, 99–124 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Norman, D. A. & Shallice, T. in Consciousness and Self-Regulation (eds Davidson, R. J. et al.) 1–18 (Plenum Press, 1986).

  • Holland, J. H., Holyoak, K. J., Nisbett, R. E. & Thagard, P. R. Induction: Processes of Inference, Learning, and Discovery (MIT Press, 1989).

  • Newell, A. & Simon, H. A. Computer science as empirical inquiry: symbols and search. Commun. ACM 19, 113–126 (1976).

    MathSciNet 

    Google Scholar
     

  • Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Gläscher, J., Daw, N., Dayan, P. & O’Doherty, J. P. States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron 66, 585–595 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramkumar, P. et al. Chunking as the result of an efficiency computation trade-off. Nat. Commun. 7, 12176 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barsalou, L. W. Ad hoc categories. Mem. Cogn. 11, 211–227 (1983).

    CAS 

    Google Scholar
     

  • Simon, H. A. The functional equivalence of problem solving skills. Cogn. Psychol. 7, 268–288 (1975).


    Google Scholar
     

  • Brooks, R. A. Intelligence without representation. Artif. Intell. 47, 139–159 (1991).


    Google Scholar
     

  • Puterman, M. L. Markov Decision Processes: Discrete Stochastic Dynamic Programming (John Wiley & Sons, 1994).

  • Bellman, R. Dynamic Programming (Princeton Univ. Press, 1957).

  • Leong, Y. C., Radulescu, A., Daniel, R., DeWoskin, V. & Niv, Y. Dynamic interaction between reinforcement learning and attention in multidimensional environments. Neuron 93, 451–463 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hinton, G. E. Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771–1800 (2002).

  • Whiteley, L. & Sahani, M. Attention in a Bayesian framework. Front. Hum. Neurosci. 6, 100 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lieder, F. & Griffiths, T. L. Resource-rational analysis: understanding human cognition as the optimal use of limited computational resources. Behav. Brain Sci. 43, e1 (2020).


    Google Scholar
     

  • Yoo, A. H., Klyszejko, Z., Curtis, C. E. & Ma, W. J. Strategic allocation of working memory resource. Sci. Rep. 8, 16162 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grünwald, P. Model selection based on minimum description length. J. Math. Psychol. 44, 133–152 (2000).

    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Gabaix, X. A sparsity-based model of bounded rationality. Q. J. Econ. 129, 1661–1710 (2014).

    MATH 

    Google Scholar
     

  • Marr, D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (W. H. Freeman, 1982).

  • Anderson, J. R. The Adaptive Character of Thought (Lawrence Erlbaum Associates, 1990).

  • Gershman, S. J. The successor representation: its computational logic and neural substrates. J. Neurosci. 38, 7193–7200 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stachenfeld, K. L., Botvinick, M. M. & Gershman, S. J. The hippocampus as a predictive map. Nat. Neurosci. 20, 1643–1653 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Tversky, B. & Hemenway, K. Objects, parts, and categories. J. Exp. Psychol. 113, 169–193 (1984).

    CAS 

    Google Scholar
     

  • Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. How to grow a mind: statistics, structure, and abstraction. Science 331, 1279–1285 (2011).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nassar, M. R. & Frank, M. J. Taming the beast: extracting generalizable knowledge from computational models of cognition. Curr. Opin. Behav. Sci. 11, 49–54 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 2018).

  • Parr, R. & Russell, S. in Proc. Advances in Neural Information Processing Systems (eds Jordan, M. I. et al.) 10 (MIT Press, 1997).

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howard, R. A. Dynamic Programming and Markov Processes (MIT Press, 1960).

  • Barto, A. G., Bradtke, S. J. & Singh, S. P. Learning to act using real-time dynamic programming. Artif. Intell. 72, 81–138 (1995).


    Google Scholar
     

  • Bonet, B. & Geffner, H. Labeled RTDP: improving the convergence of real-time dynamic programming. In Proc. International Conference on Planning and Automated Scheduling Vol. 3 (ed. Giunchiglia, E.) 12–21 (AAAI Press, 2003).

  • Hansen, E. A. & Zilberstein, S. LAO: a heuristic search algorithm that finds solutions with loops. Artif. Intell. 129, 35–62 (2001).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Hart, P. E., Nilsson, N. J. & Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4, 100–107 (1968).


    Google Scholar
     

  • Momennejad, I. et al. The successor representation in human reinforcement learning. Nat. Hum. Behav. 1, 680–692 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russek, E. M., Momennejad, I., Botvinick, M. M., Gershman, S. J. & Daw, N. D. Predictive representations can link model-based reinforcement learning to model-free mechanisms. PLoS Comput. Biol. 13, e1005768 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solway, A. et al. Optimal behavioral hierarchy. PLoS Comput. Biol. 10, e1003779 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, J. & Malik, J. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000).


    Google Scholar
     

  • Gureckis, T. M. et al. psiTurk: an open-source framework for conducting replicable behavioral experiments online. Behav. Res. Methods 48, 829–842 (2016).

    PubMed 

    Google Scholar
     

  • De Leeuw, J. R. jsPsych: a JavaScript library for creating behavioral experiments in a web browser. Behav. Res. Methods 47, 1–12 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).


    Google Scholar
     

  • The rpy2 Contributors. rpy2 version 3.3.6. (2020); https://rpy2.github.io/



  • Source link