• Wang, J. et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature 586, 720–723 (2020).

  • Thompson, R. L. et al. Top-down assessment of the Asian carbon budget since the mid 1990s. Nat. Commun. 7, 10724 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jiang, F. et al. A comprehensive estimate of recent carbon sinks in China using both top-down and bottom-up approaches. Sci. Rep. 6, 22130 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, H. F. et al. Net terrestrial CO2 exchange over China during 2001–2010 estimated with an ensemble data assimilation system for atmospheric CO2. J. Geophys. Res. Atmos. 119, 3500–3515 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bey, I. et al. Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation, J. Geophys. Res., 106, 23073–23096 (2001).

  • Krol, M. et al. The two-way nested global chemistry-transport zoom model TM5: algorithm and applications. Atmospheric Chem. Phys. 5, 417–432 (2005).

  • Peiro, H. et al. Four years of global carbon cycle observed from OCO-2 version 9 and in situ data, and comparison to OCO-2 v7. Atmos. Chem. Phys. Discuss. https://doi.org/10.5194/acp-2021-373 (2021).

  • Schuh, A. E. et al. Quantifying the impact of atmospheric transport uncertainty on CO2 surface flux estimates. Glob. Biogeochem. Cycles 33, 484–500 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Stanevich, I. et al. Characterizing model errors in chemical transport modeling of methane: impact of model resolution in versions v9-02 of GEOS-Chem and v35j of its adjoint model. Geosci. Model Dev. 13, 3839–3862 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Stephens, B. B. et al. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316, 1732–1735 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Philip, S. et al. Prior biosphere model impact on global terrestrial CO2 fluxes estimated from OCO-2 retrievals. Atmos. Chem. Phys. 19, 13267–13287 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Byrne, B. et al. Improved constraints on northern extratropical CO2 fluxes obtained by combining surface-based and space-based atmospheric CO2 measurements. J. Geophys. Res. Atmos. 125, e2019JD032029 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Liu, J. et al. Comparison between the Local Ensemble Transform Kalman Filter (LETKF) and 4D‐Var in atmospheric CO2 flux inversion with the Goddard Earth Observing System‐Chem model and the observation impact diagnostics from the LETKF. J. Geophys. Res. Atmos. 121, 13066–13087 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Peylin, P. et al. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10, 6699–6720 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Canadell, J. G. et al. An international effort to quantify regional carbon fluxes. Eos Trans. Am. Geophys. Union 92, 81–82 (2011).

    Article 

    Google Scholar
     

  • Crowell, S. et al. The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network. Atmos. Chem. Phys. 19, 9797–9831 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     



  • Source link