• Yang, C. N. Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors. Rev. Mod. Phys. 34, 694–704 (1962).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Zhou, X. et al. High-temperature superconductivity. Nat. Rev. Phys. 3, 462–465 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Holten, M. et al. Observation of Pauli crystals. Phys. Rev. Lett. 126, 020401 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Alhassid, Y. The statistical theory of quantum dots. Rev. Mod. Phys. 72, 895–968 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • von Delft, J. Superconductivity in ultrasmall metallic grains. Ann. Phys. 10, 219–276 (2001).

    Article 

    Google Scholar
     

  • Launey, K. (ed.) Emergent Phenomena in Atomic Nuclei from Large-scale Modeling : A Symmetry-Guided Perspective (World Scientific, 2017).

  • Altman, E., Demler, E. & Lukin, M. D. Probing many-body states of ultracold atoms via noise correlations. Phys. Rev. A 70, 013603 (2004).

    ADS 
    Article 

    Google Scholar
     

  • Schweigler, T. et al. Experimental characterization of a quantum many-body system via higher-order correlations. Nature 545, 323–326 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Flammia, S. T., Gross, D., Liu, Y.-K. & Eisert, J. Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators. New J. Phys. 14, 095022 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Zache, T. V., Schweigler, T., Erne, S., Schmiedmayer, J. & Berges, J. Extracting the field theory description of a quantum many-body system from experimental data. Phys. Rev. 10, 011020 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Cooper, L. N. Bound electron pairs in a degenerate Fermi gas. Phys. Rev. 104, 1189–1190 (1956).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Greiner, M., Regal, C. A., Stewart, J. T. & Jin, D. S. Probing pair-correlated fermionic atoms through correlations in atom shot noise. Phys. Rev. Lett. 94, 110401 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Fölling, S. et al. Spatial quantum noise interferometry in expanding ultracold atom clouds. Nature 434, 481–484 (2005).

    ADS 
    Article 

    Google Scholar
     

  • Rom, T. et al. Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice. Nature 444, 733–736 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Spielman, I., Phillips, W. & Porto, J. Mott-insulator transition in a two-dimensional atomic Bose gas. Phys. Rev. Lett. 98, 080404 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jeltes, T. et al. Comparison of the Hanbury Brown–Twiss effect for bosons and fermions. Nature 445, 402–405 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tenart, A., Hercé, G., Bureik, J.-P., Dareau, A. & Clément, D. Observation of pairs of atoms at opposite momenta in an equilibrium interacting Bose gas. Nat. Phys. 17, 1364–1368 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Parsons, M. F. et al. Site-resolved measurement of the spin-correlation function in the Fermi–Hubbard model. Science 353, 1253–1256 (2016).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Koepsell, J. et al. Robust bilayer charge pumping for spin- and density-resolved quantum gas microscopy. Phys. Rev. Lett. 125, 010403 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bergschneider, A. et al. Spin-resolved single-atom imaging of 6Li in free space. Phys. Rev. A 97, 063613 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Preiss, P. M. et al. High-contrast interference of ultracold fermions. Phys. Rev. Lett. 122, 143602 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bayha, L. et al. Observing the emergence of a quantum phase transition shell by shell. Nature 587, 583–587 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Serwane, F. et al. Deterministic preparation of a tunable few-fermion system. Science 332, 336–338 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zürn, G. et al. Precise characterization of 6Li Feshbach resonances using trap-sideband-resolved RF spectroscopy of weakly bound molecules. Phys. Rev. Lett. 110, 135301 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Randeria, M., Duan, J.-M. & Shieh, L.-Y. Superconductivity in a two-dimensional Fermi gas: evolution from Cooper pairing to Bose condensation. Phys. Rev. B 41, 327–343 (1990).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bohr, A. & Mottelson, B. R. Nuclear Structure Vols I, II (W.A. Benjamin, 1975).

  • Bruun, G. M. Long-lived Higgs mode in a two-dimensional confined Fermi system. Phys. Rev. A 90, 023621 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Bjerlin, J., Reimann, S. & Bruun, G. Few-body precursor of the Higgs mode in a Fermi gas. Phys. Rev. Lett. 116, 155302 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Randeria, M., Duan, J.-M. & Shieh, L.-Y. Bound states, Cooper pairing, and Bose condensation in two dimensions. Phys. Rev. Lett. 62, 981–984 (1989).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Asteria, L., Zahn, H. P., Kosch, M. N., Sengstock, K. & Weitenberg, C. Quantum gas magnifier for sub-lattice-resolved imaging of 3D quantum systems. Nature 599, 571–575 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Murthy, P. A. et al. High-temperature pairing in a strongly interacting two-dimensional Fermi gas. Science 359, 452–455 (2017).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Pecak, D. & Sowiński, T. Signatures of unconventional pairing in spin-imbalanced one-dimensional few-fermion systems. Phys. Rev. Res. 2, 012077 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Chevy, F. & Mora, C. Ultra-cold polarized Fermi gases. Rep. Prog. Phys. 73, 112401 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Palm, L., Grusdt, F. & Preiss, P. M. Skyrmion ground states of rapidly rotating few-fermion systems. New J. Phys. 22, 083037 (2020).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Pecci, G., Naldesi, P., Minguzzi, A. & Amico, L. The phase of a degenerate Fermi gas. Preprint at https://arxiv.org/abs/2105.10408 (2021).

  • Idziaszek, Z. & Calarco, T. Analytical solutions for the dynamics of two trapped interacting ultracold atoms. Phys. Rev. A 74, 022712 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Zwierlein, M. W. High-Temperature Superfluidity in an Ultracold Fermi Gas. PhD thesis, Massachusetts Institute of Technology (2007).



  • Source link