• Cohen, E. et al. Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond. Nat. Rev. Phys. 1, 437–449 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Coulais, C., Fleury, R. & van Wezel, J. Topology and broken Hermiticity. Nat. Phys. 17, 9–13 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Lieu, S. Topological symmetry classes for non-Hermitian models and connections to the bosonic Bogoliubov–de Gennes equation. Phys. Rev. B 98, 115135 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Gong, Z. et al. Topological phases of non-Hermitian systems. Phys. Rev. X 8, 031079 (2018).

    CAS 

    Google Scholar
     

  • St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photonics 11, 651–656 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Hu, B. et al. Non-Hermitian topological whispering gallery. Nature 597, 655–659 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Barnett, R. Edge-state instabilities of bosons in a topological band. Phys. Rev. A 88, 063631 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Peano, V., Houde, M., Brendel, C., Marquardt, F. & Clerk, A. A. Topological phase transitions and chiral inelastic transport induced by the squeezing of light. Nat. Commun. 7, 10779 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Peano, V., Houde, M., Marquardt, F. & Clerk, A. A. Topological quantum fluctuations and traveling wave amplifiers. Phys. Rev. X 6, 041026 (2016).


    Google Scholar
     

  • Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Ghatak, A., Brandenbourger, M., van Wezel, J. & Coulais, C. Observation of non-Hermitian topology and its bulk–edge correspondence in an active mechanical metamaterial. Proc. Natl Acad. Sci. USA 117, 29561–29568 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Helbig, T. et al. Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys. 16, 747–750 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar
     

  • Wang, K. et al. Generating arbitrary topological windings of a non-Hermitian band. Science 371, 1240–1245 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sliwa, K. M. et al. Reconfigurable Josephson circulator/directional amplifier. Phys. Rev. X 5, 041020 (2015).


    Google Scholar
     

  • Ruesink, F., Miri, M.-A., Alù, A. & Verhagen, E. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 13662 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Mercier de Lépinay, L., Ockeloen-Korppi, C. F., Malz, D. & Sillanpää, M. A. Nonreciprocal transport based on cavity Floquet modes in optomechanics. Phys. Rev. Lett. 125, 023603 (2020).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Huber, S. D. Topological mechanics. Nat. Phys. 12, 621–623 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar
     

  • Özdemir, S. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. X. & Clerk, A. A. Non-Hermitian dynamics without dissipation in quantum systems. Phys. Rev. A 99, 063834 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Flynn, V. P., Cobanera, E. & Viola, L. Deconstructing effective non-Hermitian dynamics in quadratic bosonic Hamiltonians. New J. Phys. 22, 083004 (2020).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • McDonald, A., Pereg-Barnea, T. & Clerk, A. A. Phase-dependent chiral transport and effective non-Hermitian dynamics in a bosonic Kitaev–Majorana chain. Phys. Rev. X 8, 041031 (2018).


    Google Scholar
     

  • Wanjura, C. C., Brunelli, M. & Nunnenkamp, A. Topological framework for directional amplification in driven-dissipative cavity arrays. Nat. Commun. 11, 3149 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Xu, H., Jiang, L., Clerk, A. A. & Harris, J. G. E. Nonreciprocal control and cooling of phonon modes in an optomechanical system. Nature 568, 65–69 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mathew, J. P., del Pino, J. & Verhagen, E. Synthetic gauge fields for phonon transport in a nano-optomechanical system. Nat. Nanotechnol. 15, 198–202 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Koutserimpas, T. T. & Fleury, R. Non-reciprocal gain in non-Hermitian time-Floquet systems. Phys. Rev. Lett. 120, 087401 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146–151 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Habraken, S. J., Stannigel, K., Lukin, M. D., Zoller, P. & Rabl, P. Continuous mode cooling and phonon routers for phononic quantum networks. New J. Phys. 14, 115004 (2012).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Huber, J. S. et al. Spectral evidence of squeezing of a weakly damped driven nanomechanical mode. Phys. Rev. X 10, 021066 (2020).

    CAS 

    Google Scholar
     

  • Downing, C. A., Zueco, D. & Martín-Moreno, L. Chiral current circulation and ({mathscr{P}}{mathscr{T}}) symmetry in a trimer of oscillators. ACS Photonics 7, 3401–3414 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Tang, W. et al. Exceptional nexus with a hybrid topological invariant. Science 370, 1077–1080 (2020).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar
     

  • Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lau, H.-K. & Clerk, A. A. Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun. 9, 4320 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mahboob, I., Okamoto, H. & Yamaguchi, H. An electromechanical Ising Hamiltonian. Sci. Adv. 2, e1600236 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ozawa, T., Price, H. M., Goldman, N., Zilberberg, O. & Carusotto, I. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics. Phys. Rev. A 93, 043827 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Goldman, N., Budich, J. & Zoller, P. Topological quantum matter with ultracold gases in optical lattices. Nat. Phys. 12, 639–645 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Reiter, F. & Sørensen, A. S. Effective operator formalism for open quantum systems. Phys. Rev. A 85, 032111 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics 6, 782–787 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Mahboob, I., Okamoto, H., Onomitsu, K. & Yamaguchi, H. Two-mode thermal-noise squeezing in an electromechanical resonator. Phys. Rev. Lett. 113, 167203 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leuch, A. et al. Parametric symmetry breaking in a nonlinear resonator. Phys. Rev. Lett. 117, 214101 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Calvanese Strinati, M., Bello, L., Pe’er, A. & Dalla Torre, E. G. Theory of coupled parametric oscillators beyond coupled Ising spins. Phys. Rev. A 100, 023835 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bello, L., Calvanese Strinati, M., Dalla Torre, E. G. & Pe’er, A. Persistent coherent beating in coupled parametric oscillators. Phys. Rev. Lett. 123, 083901 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Slemrod, M. Review: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. J. Appl. Mech. 51, 947 (1984).


    Google Scholar
     

  • Gardiner, C. & Zoller, P. Quantum Noise (Springer, 2004).

  • Blaizot, J.-P. & Ripka, G. Quantum Theory of Finite Systems (MIT Press, 1986).

  • Rossignoli, R. & Kowalski, A. M. Complex modes in unstable quadratic bosonic forms. Phys. Rev. A 72, 032101 (2005).

    ADS 
    MathSciNet 
    Article 
    CAS 

    Google Scholar
     

  • Aranas, E. B., Javed Akram, M., Malz, D. & Monteiro, T. S. Quantum noise spectra for periodically driven cavity optomechanics. Phys. Rev. A 96, 063836 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Richards, J. A. Analysis of Periodically Time-Varying Systems (Springer, 2012).

  • Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having ({mathscr{P}}{mathscr{T}}) symmetry. Phys. Rev. Lett. 80, 5243 (1998).

    ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Ornigotti, M. & Szameit, A. Quasi ({mathscr{P}}{mathscr{T}})-symmetry in passive photonic lattices. J. Opt. 16, 065501 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Li, H., Mekawy, A., Krasnok, A. & Alù, A. Virtual parity-time symmetry. Phys. Rev. Lett. 124, 193901 (2020).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Heiss, W. D. The physics of exceptional points. J. Phys. A 45, 444016 (2012).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Moiseyev, N. Non-Hermitian Quantum Mechanics (Cambridge Univ. Press, 2011).

  • Koch, J., Houck, A. A., Hur, K. L. & Girvin, S. M. Time-reversal symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A 82, 043811 (2010).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Ranzani, L. & Aumentado, J. Graph-based analysis of nonreciprocity in coupled-mode systems. New J. Phys. 17, 023024 (2015).

    ADS 
    MATH 
    Article 

    Google Scholar
     

  • Takata, K. et al. Observing exceptional point degeneracy of radiation with electrically pumped photonic crystal coupled-nanocavity lasers. Optica 8, 184 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Leijssen, R. & Verhagen, E. Strong optomechanical interactions in a sliced photonic crystal nanobeam. Sci Rep. 5, 15974 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Leijssen, R., La Gala, G. R., Freisem, L., Muhonen, J. T. & Verhagen, E. Nonlinear cavity optomechanics with nanomechanical thermal fluctuations. Nat. Commun. 8, 16024 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hauer, B. D., Clark, T. J., Kim, P. H., Doolin, C. & Davis, J. P. Dueling dynamical backaction in a cryogenic optomechanical cavity. Phys. Rev. A 99, 053803 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Frimmer, M. & Novotny, L. The classical Bloch equations. Am. J. Phys. 82, 947–954 (2014).

    ADS 
    Article 

    Google Scholar
     



  • Source link