• Traquair, R. H. On the fossil fishes at Achanarras Quarry, Caithness. Ann. Mag. Nat. Hist. 6, 479–486 (1890).

    Article 

    Google Scholar
     

  • Jarvik, E. Basic Structure and Evolution of Vertebrates Vol. I (Academic Press, 1980).

  • Ahlberg, P. E., Clack, J. A. & Lukševičs, E. Rapid braincase evolution between Panderichthys and the earliest tetrapods. Nature 381, 61–64 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Trewin, N. H. Palaeoecology and sedimentology of the Archanarras fish bed of the Middle Old Red Sandstone, Scotland. Trans. R. Soc. Edinb. Earth Sci. 77, 21–46 (1986).

    Article 

    Google Scholar
     

  • Sollas, W. J. & Sollas, I. B. J. An account of the Devonian fish Palaeospondylus gunni Traquair. Philos. Trans. R. Soc. Lond. B 196, 267–294 (1904).

    ADS 
    Article 

    Google Scholar
     

  • den Blaauwen, J., Barwick, R. E. & Campbell, K. S. W. Structure and function of the tooth plates of the Devonian lungfish Dipterus valenciennesi from Caithness and the Orkney Islands. Rec. West. Aust. Mus. 23, 91–113 (2005).

    Article 

    Google Scholar
     

  • Traquair, R. H. A still further contribution to our knowledge of Palaeospondylus gunni. Proc. R. Soc. Edinb. 12, 312–321 (1893).


    Google Scholar
     

  • Dean, B. The so-called Devonian lamprey, Palaeospondylus gunni: with notes on the systematic arrangement of the fish-like vertebrates. Mem. N. Y. Acad. Sci. 2, 1–32 (1900).


    Google Scholar
     

  • Johanson, Z. et al. Questioning hagfish affinities of the enigmatic Devonian vertebrate Palaeospondylus. R. Soc. Open Sci. 4, 170214 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Keating, J. N. & Donoghue, P. C. Histology and affinity of anaspids, and the early evolution of the vertebrate dermal skeleton. Proc. R. Soc. B 283, 20152917 (2016).

    Article 

    Google Scholar
     

  • Johanson, Z., Kearsley, A., den Blaauwen, J., Newman, M. & Smith, M. M. Ontogenetic development of an exceptionally preserved Devonian cartilaginous skeleton. J. Exp. Zool. B 318B, 50–58 (2012).

    Article 

    Google Scholar
     

  • de Pinna, M. C. C. Concepts and tests of homology in the cladistic paradigm. Cladistics 7, 367–394 (1991).

    Article 

    Google Scholar
     

  • Moy-Thomas, J. A. The Devonian fish Palaeospondylus gunni Traquair. Philos. Trans. R. Soc. Lond. B 230, 391–413 (1940).

    ADS 
    Article 

    Google Scholar
     

  • Higuchi, S. et al. Inner ear development in cyclostomes and evolution of the vertebrate semicircular canals. Nature 565, 347–350 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Dutel, H. et al. Neurocranial development of the coelacanth and the evolution of the sarcopterygian head. Nature 569, 556–559 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Campbell, K. S. W., Barwick, R. E. & Senden, T. Development of the posterior endocranium of the Devonian dipnoan Griphognathus whitei. J Vertebr. Paleontol. 32, 781–798 (2012).

    Article 

    Google Scholar
     

  • Cloutier, R. et al. Elpistostege and the origin of the vertebrate hand. Nature 579, 549–554 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article 

    Google Scholar
     

  • Swofford, D. L. PAUP*. Phylogenetic Analyses Using Parsimony (*And Other Methods) (Sinauer Associates, 2003).

  • Coates, M. I. The Devonian tetrapod Acanthostega gunnari Jarvik: postcranial anatomy, basal tetrapod interrelationships and patterns of skeletal evolution. Trans. R. Soc. Edinb. Earth Sci. 87, 363–421 (1996).

    Article 

    Google Scholar
     

  • Schultze, H. P. 1984. Juvenile specimens of Eusthenopteron foordi Whiteaves, 1881 (osteolepiform rhipidistian, Pisces) from the Late Devonian of Miguasha, Quebec, Canada. J. Vertebr. Paleontol. 4, 1–16 (1984).

    Article 

    Google Scholar
     

  • Cloutier, R. The fossil record of fish ontogenies: insights into developmental patterns and processes. Sem. Cell Dev. Biol. 21, 400–413 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Schoch, R. R. & Witzmann, F. Bystrow’s paradox: gills, fossils, and the fish-to-tetrapod transition. Acta Zool. 92, 251–265 (2011).

    Article 

    Google Scholar
     

  • Sanchez, S., Tafforeau, P., Clack, J. A. & Ahlberg, P. E. Life history of the stem tetrapod Acanthostega revealed by synchrotron microtomography. Nature 537, 408–411 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Niedźwiedzki, G., Szrek, P., Narkiewicz, K., Narkiewicz, M. & Ahlberg, P. E. Tetrapod trackways from the early Middle Devonian period of Poland. Nature 463, 43–48 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Uesugi, K. et al. Development of fast (sub-minute) micro-tomography. AIP Conf. Proc. 1266, 47–50 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nature Methods 9, 676–682 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Limaye, A. Drishti: a volume exploration and presentation tool. Proc. SPIE 8506, 85060X (2012).

    ADS 
    Article 

    Google Scholar
     

  • Hu, Y., Limaye, A. & Lu, J. Three-dimensional segmentation of computed tomography data using Drishti Paint: new tools and developments. R. Soc. Open Sci. 7, 201033201033 (2020).

    ADS 

    Google Scholar
     

  • Hirasawa, T. et al. Development of the pectoral lobed fin in the Australian lungfish Neoceratodus forsteri. Front. Ecol. Evol. 9, 679633 (2021).

    Article 

    Google Scholar
     

  • Kemp, A. The embryological development of the Queensland lungfish, Neoceratodus forsteri (Krefft). Mem. Queensl. Mus. 20, 553–597 (1982).


    Google Scholar
     



  • Source link