• Sun, W. et al. The thermodynamic scale of inorganic crystalline metastability. Sci. Adv. 2, e1600225 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinolich, A. J. & Neilson, J. R. Toward reaction-by-design: achieving kinetic control of solid state chemistry with metathesis. Chem. Mater. 29, 479–489 (2017).

    CAS 

    Google Scholar
     

  • Gopalakrishnan, J. Chimie douce approaches to the synthesis of metastable oxide materials. Chem. Mater. 7, 1265–1275 (1995).

    CAS 

    Google Scholar
     

  • Chen, B.-R. et al. Understanding crystallization pathways leading to manganese oxide polymorph formation. Nat. Commun. 9, 2553 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aykol, M., Dwaraknath, S. S., Sun, W. & Persson, K. A. Thermodynamic limit for synthesis of metastable inorganic materials. Sci. Adv. 4, eaaq0148 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baldi, A., Narayan, T. C., Koh, A. L. & Dionne, J. A. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat. Mater. 13, 1143–1148 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Griessen, R., Strohfeldt, N. & Giessen, H. Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles. Nat. Mater. 15, 311–317 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuk, J. M. et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 61–64 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schneider, N. M. et al. Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C 118, 22373–22382 (2014).

    CAS 

    Google Scholar
     

  • Park, J. et al. 3D structure of individual nanocrystals in solution by electron microscopy. Science 349, 290–295 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sachs, C. et al. Solubility of hydrogen in single-sized palladium clusters. Phys. Rev. B 64, 075408 (2001).

    ADS 

    Google Scholar
     

  • Moore, W. J. Jr & Pauling, L. The crystal structures of the tetragonal monoxides of lead, tin, palladium, and platinum. J. Am. Chem. Soc. 63, 1392–1394 (1941).


    Google Scholar
     

  • Zhou, X., Zimmerman, J. A., Wong, B. M. & Hoyt, J. J. An embedded-atom method interatomic potential for Pd–H alloys. J. Mater. Res. 23, 704–718 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Algara-Siller, G. et al. Square ice in graphene nanocapillaries. Nature 519, 443–445 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, X., Li, H., Ahuja, R., Kang, T. & Luo, W. Formation and electronic properties of palladium hydrides and palladium-rhodium dihydride alloys under pressure. Sci. Rep. 7, 3520 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walter, J., Heiermann, J., Dyker, G., Hara, S. & Shioyama, H. Hexagonal or quasi two-dimensional palladium nanoparticles—tested at the Heck reaction. J. Catal. 189, 449–455 (2000).

    CAS 

    Google Scholar
     

  • Park, J. H. et al. Control of electron beam-induced Au nanocrystal growth kinetics through solution chemistry. Nano Lett. 15, 5314–5320 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ross, F. M. Liquid Cell Electron Microscopy (Cambridge Univ. Press, 2017).

  • Bakalis, E. et al. Complex nanoparticle diffusional motion in liquid-cell transmission electron microscopy. J. Phys. Chem. C 124, 14881–14890 (2020).

    CAS 

    Google Scholar
     

  • Loh, N. D. et al. Multistep nucleation of nanocrystals in aqueous solution. Nat. Chem. 9, 77–82 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Nielsen, M. H., Aloni, S. & De Yoreo, J. J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 345, 1158–1162 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. S. et al. Deciphering chemical order/disorder and material properties at the single-atom level. Nature 542, 75–79 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, J., Yang, Y., Ercius, P. & Miao, J. Atomic electron tomography in three and four dimensions. MRS Bull. 45, 290–297 (2020).

    ADS 

    Google Scholar
     

  • Pryor, A. Jr et al. GENFIRE: a generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging. Sci. Rep. 7, 10409 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, D. et al. Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014–1018 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lange, A. P. et al. Dislocation mediated alignment during metal nanoparticle coalescence. Acta Mater. 120, 364–378 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Kim, B. H. et al. Critical differences in 3D atomic structure of individual ligand-protected nanocrystals in solution. Science 368, 60–67 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, T. H. & Liu, X. Y. How does a transient amorphous precursor template crystallization. J. Am. Chem. Soc. 129, 13520–13526 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J., Yang, J., Kwon, S. G. & Hyeon, T. Nonclassical nucleation and growth of inorganic nanoparticles. Nat. Rev. Mater. 1, 16034 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Guo, C., Wang, J., Li, J., Wang, Z. & Tang, S. Kinetic pathways and mechanisms of two-step nucleation in crystallization. J. Phys. Chem. Lett. 7, 5008–5014 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Lim, B., Xiong, Y. & Xia, Y. A water-based synthesis of octahedral, decahedral, and icosahedral Pd nanocrystals. Angew. Chem. Int. Edn 46, 9279–9282 (2007).

    CAS 

    Google Scholar
     

  • Buxton, G. V., Greenstock, C. L., Helman, W. P. & Ross, A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–886 (1988).

    ADS 
    CAS 

    Google Scholar
     

  • Jung, H. J. et al. Spatial variation of available electronic excitations within individual quantum dots. Nano Lett. 13, 716–721 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer Science & Business Media, 2011).

  • Woehl, T. J., Evans, J. E., Arslan, I., Ristenpart, W. D. & Browning, N. D. Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 6, 8599–8610 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hammond, C. The Basics of Crystallography and Diffraction Vol. 214 (Oxford, 2001).

  • Duroy, H. & Fourquet, J. Ab-initio structure determination of LiSbWO6 by x-ray powder diffraction. Mat. Res. Bull. 23, 447–452 (1988).


    Google Scholar
     

  • Bruker AXS, TOPAS v5. General profile and structure analysis software for powder diffraction data—user’s manual (Bruker AXS,Karlsruhe, Germany, 2014).

  • Dabov, K., Foi, A., Katkovnik, V. & Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007).

    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Tian, X. et al. Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides. Nat. Mater. 19, 867–873 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scott, M. C. et al. Electron tomography at 2.4-ångström resolution. Nature 483, 444–447 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, C. C. et al. Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature 496, 74–77 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    PubMed 

    Google Scholar
     

  • Giannozzi, P. et al. Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    ADS 

    Google Scholar
     

  • Dal Corso, A. Pseudopotentials periodic table: from H to Pu. Comput. Mater. Sci. 95, 337–350 (2014).

    CAS 

    Google Scholar
     

  • Houari, A., Matar, S. F. & Eyert, V. Electronic structure and crystal phase stability of palladium hydrides. J. Appl. Phys. 116, 173706 (2014).

    ADS 

    Google Scholar
     

  • Marzari, N., Vanderbilt, D., De Vita, A. & Payne, M. C. Thermal contraction and disordering of the Al(110) surface. Phys. Rev. Lett. 82, 3296–3299 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Long, D. et al. Accounting for the thermo-stability of PdHx (x = 1–3) by density functional theory. Int. J. Hydrog. Energy 43, 18372–18381 (2018).

  • Arblaster, J. W. Crystallographic properties of palladium. Platin. Met. Rev. 56, 181–189 (2012).

    CAS 

    Google Scholar
     

  • Schirber, J. E. & Morosin, B. Lattice constants of β−PdHx and β−PdDx with x near 1.0. Phys. Rev. B 12, 117–118 (1975).

    ADS 
    CAS 

    Google Scholar
     

  • Errea, I., Calandra, M. & Mauri, F. First-principles theory of anharmonicity and the inverse isotope effect in superconducting palladium-hydride compounds. Phys. Rev. Lett. 111, 177002 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • Kobayashi, K. et al. Discovery of hexagonal structured Pd-B nanocrystals. Angew. Chem. Int. Edn 56, 6578–6582 (2017).

    CAS 

    Google Scholar
     

  • Chen, L. et al. Metal boride better than Pt: HCP Pd2B as a superactive hydrogen evolution reaction catalyst. Energy Environ. Sci. 12, 3099–3105 (2019).


    Google Scholar
     

  • Politano, A., Chiarello, G. & Spinella, C. Plasmon spectroscopy of graphene and other two-dimensional materials with transmission electron microscopy. Mater. Sci. Semicond. Process. 65, 88–99 (2017).

    CAS 

    Google Scholar
     

  • Schneider, N. M. Radiolysis. GitHub https://github.com/NMSchneider/Radiolysis (2015).

  • Kwon, S. G. & Hyeon, T. Formation mechanisms of uniform nanocrystals via hot‐injection and heat‐up methods. Small 7, 2685–2702 (2011).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Invest In Films & Earn Yearly

    Invest in films & earn yearly

    initial deposit returned + 25% min on top

    + 50% return on royalties for life

    This will close in 20 seconds