• Phillips, W. D. Nobel lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Chu, S. Nobel lecture: The manipulation of neutral particles. Rev. Mod. Phys. 70, 685–706 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Cornell, E. A. & Wieman, C. E. Nobel lecture: Bose–Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Davis, K. B. et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Levine, H. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Barry, J. F., McCarron, D., Norrgard, E., Steinecker, M. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Truppe, S. et al. Molecules cooled below the Doppler limit. Nat. Phys. 13, 1173–1176 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Anderegg, L. et al. Radio frequency magneto-optical trapping of CaF with high density. Phys. Rev. Lett. 119, 103201 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Collopy, A. L. et al. 3D magneto-optical trap of yttrium monoxide. Phys. Rev. Lett. 121, 213201 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Micheli, A., Brennen, G. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341–347 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Yu, P., Cheuk, L. W., Kozyryev, I. & Doyle, J. M. A scalable quantum computing platform using symmetric-top molecules. New J. Phys. 21, 093049 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wall, M. L., Maeda, K. & Carr, L. D. Simulating quantum magnets with symmetric top molecules. Ann. Phys. 525, 845–865 (2013).

    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Wall, M., Maeda, K. & Carr, L. D. Realizing unconventional quantum magnetism with symmetric top molecules. New J. Phys. 17, 025001 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Augustovičová, L. D. & Bohn, J. L. Ultracold collisions of polyatomic molecules: CaOH. New J. Phys. 21, 103022 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Heazlewood, B. R. & Softley, T. P. Towards chemistry at absolute zero. Nat. Rev. Chem. 5, 125–140 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Kozyryev, I. & Hutzler, N. R. Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules. Phys. Rev. Lett. 119, 133002 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Kozyryev, I., Lasner, Z. & Doyle, J. M. Enhanced sensitivity to ultralight bosonic dark matter in the spectra of the linear radical SrOH. Phys. Rev. A 103, 043313 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, J. T. et al. An optical tweezer array of ground-state polar molecules. Quantum Sci. Technol. 7, 035006 (2022).

  • Isaev, T. A. & Berger, R. Polyatomic candidates for cooling of molecules with lasers from simple theoretical concepts. Phys. Rev. Lett. 116, 063006 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Kozyryev, I., Baum, L., Matsuda, K. & Doyle, J. M. Proposal for laser cooling of complex polyatomic molecules. ChemPhysChem 17, 3641–3648 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Augenbraun, B. L., Doyle, J. M., Zelevinsky, T. & Kozyryev, I. Molecular asymmetry and optical cycling: laser cooling asymmetric top molecules. Phys. Rev. X 10, 031022 (2020).

    CAS 

    Google Scholar
     

  • Dickerson, C. E. et al. Franck–Condon tuning of optical cycling centers by organic functionalization. Phys. Rev. Lett. 126, 123002 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, Y. et al. Magnetic trapping of cold methyl radicals. Phys Rev. Lett. 118, 093201 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Zeppenfeld, M. et al. Sisyphus cooling of electrically trapped polyatomic molecules. Nature 491, 570–573 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Prehn, A., Ibrügger, M., Glöckner, R., Rempe, G. & Zeppenfeld, M. Optoelectrical cooling of polar molecules to submillikelvin temperatures. Phys. Rev. Lett. 116, 063005 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Kozyryev, I. et al. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 118, 173201 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Baum, L. et al. 1D magneto-optical trap of polyatomic molecules. Phys. Rev. Lett. 124, 133201 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Augenbraun, B. L. et al. Laser-cooled polyatomic molecules for improved electron electric dipole moment searches. New J. Phys. 22, 022003 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Mitra, D. et al. Direct laser cooling of a symmetric top molecule. Science 369, 1366–1369 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cheuk, L. W. et al. λ-enhanced imaging of molecules in an optical trap. Phys. Rev. Lett. 121, 083201 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Caldwell, L. et al. Deep laser cooling and efficient magnetic compression of molecules. Phys. Rev. Lett. 123, 033202 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Langin, T. K., Jorapur, V., Zhu, Y., Wang, Q. & DeMille, D. Polarization enhanced deep optical dipole trapping of Λ-cooled polar molecules. Phys. Rev. Lett. 127, 163201 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu, Y., Burau, J. J., Mehling, K., Ye, J. & Ding, S. High phase-space density of laser-cooled molecules in an optical lattice. Phys. Rev. Lett. 127, 263201 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Anderegg, L. et al. Laser cooling of optically trapped molecules. Nat. Phys. 14, 890–893 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Hutzler, N. R., Lu, H.-I. & Doyle, J. M. The buffer gas beam: an intense, cold, and slow source for atoms and molecules. Chem. Rev. 112, 4803–4827 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jadbabaie, A., Pilgram, N. H., Klos, J., Kotochigova, S. & Hutzler, N. R. Enhanced molecular yield from a cryogenic buffer gas beam source via excited state chemistry. New J. Phys. 22, 022002 (2020).

  • Zhu, M., Oates, C. W. & Hall, J. L. Continuous high-flux monovelocity atomic beam based on a broadband laser-cooling technique. Phys. Rev. Lett. 67, 46–49 (1991).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barry, J. F., Shuman, E., Norrgard, E. & DeMille, D. Laser radiation pressure slowing of a molecular beam. Phys. Rev. Lett. 108, 103002 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yeo, M. et al. Rotational state microwave mixing for laser cooling of complex diatomic molecules. Phys. Rev. Lett. 114, 223003 (2015).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Hemmerling, B. et al. Laser slowing of CaF molecules to near the capture velocity of a molecular mot. J. Phys. B 49, 174001 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Truppe, S. et al. An intense, cold, velocity-controlled molecular beam by frequency-chirped laser slowing. New J. Phys. 19, 022001 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Baum, L. et al. Establishing a nearly closed cycling transition in a polyatomic molecule. Phys. Rev. A 103, 043111 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, C. et al. Accurate prediction and measurement of vibronic branching ratios for laser cooling linear polyatomic molecules. J. Chem. Phys. 155, 091101 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Steinecker, M. H., McCarron, D. J., Zhu, Y. & DeMille, D. Improved radio-frequency magneto-optical trap of srf molecules. ChemPhysChem 17, 3664–3669 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Berkeland, D. J. & Boshier, M. G. Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems. Phys. Rev. A 65, 033413 (2002).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Tarbutt, M. Magneto-optical trapping forces for atoms and molecules with complex level structures. New J. Phys. 17, 015007 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Hummon, M. T. et al. 2D magneto-optical trapping of diatomic molecules. Phys. Rev. Lett. 110, 143001 (2013).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Norrgard, E., McCarron, D., Steinecker, M., Tarbutt, M. & DeMille, D. Submillikelvin dipolar molecules in a radio-frequency magneto-optical trap. Phys. Rev. Lett. 116, 063004 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Williams, H. et al. Characteristics of a magneto-optical trap of molecules. New J. Phys. 19, 113035 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Devlin, J. A. & Tarbutt, M. R. Three-dimensional Doppler, polarization-gradient, and magneto-optical forces for atoms and molecules with dark states. New J. Phys. 18, 123017 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Lim, J. et al. Laser cooled YbF molecules for measuring the electron’s electric dipole moment. Phys. Rev. Lett. 120, 123201 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Devlin, J. A. & Tarbutt, M. R. Laser cooling and magneto-optical trapping of molecules analyzed using optical Bloch equations and the Fokker–Planck–Kramers equation. Phys. Rev. A 98, 063415 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Burchesky, S. et al. Rotational coherence times of polar molecules in optical tweezers. Phys. Rev. Lett. 127, 123202 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wall, M. L., Hazzard, K. R. A. & Rey, A. M. in From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities (eds Malinovskaya, S. & Novikova, I.) Ch. 1 (World Scientific, 2015).

  • Dickerson, C. E. et al. Optical cycling functionalization of arenes. J. Phys. Chem. Lett. 12, 3989–3995 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Augenbraun, B. L. Methods for Direct Laser Cooling of Polyatomic Molecules. PhD thesis, Harvard University (2021).

  • Oberlander, M. D. & Parson, J. M. Laser excited fluorescence study of reactions of excited Ca and Sr with water and alcohols: product selectivity and energy disposal. J. Chem. Phys. 105, 5806–5816 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lu, H.-I., Rasmussen, J., Wright, M. J., Patterson, D. & Doyle, J. M. A cold and slow molecular beam. Phys. Chem. Chem. Phys. 13, 18986–18990 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     



  • Source link