• Chester, F. M. & Chester, J. S. Ultracataclasite structure and friction processes of the Punchbowl Fault, San Andreas system, California. Tectonophysics 295, 199–221 (1998).

    ADS 
    Article 

    Google Scholar
     

  • Scholz, C. H. The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, 2019).

  • Kanamori, H. & Brodsky, E. E. The physics of earthquakes. Rep. Prog. Phys. 67, 1429–1496 (2004).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Dieterich, J. H. in Treatise on Geophysics Vol. 4 (ed. Schubert, G.) 93–110 (Elsevier, 2007).

  • Tsutsumi, A. & Shimamoto, T. High‐velocity frictional properties of gabbro. Geophys. Res. Lett. 24, 699–702 (1997).

    ADS 
    Article 

    Google Scholar
     

  • Marone, C. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Di Toro, G., Goldsby, D. L. & Tullis, T. E. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature 427, 436–439 (2004).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Beeler, N. M., Tullis, T. E. & Goldsby, D. L. Constitutive relationships and physical basis of fault strength due to flash heating. J. Geophys. Res. Solid Earth 113, B01401 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Tanikawa, W. & Shimamoto, T. Frictional and transport properties of the Chelungpu Fault from shallow borehole data and their correlation with seismic behavior during the 1999 Chi‐Chi earthquake. J. Geophys. Res. Solid Earth 114, B01402 (2009).

    ADS 
    Article 

    Google Scholar
     

  • Reches, Z. E. & Lockner, D. A. Fault weakening and earthquake instability by powder lubrication. Nature 467, 452–455 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Faulkner, D., Mitchell, T., Behnsen, J., Hirose, T. & Shimamoto, T. Stuck in the mud? Earthquake nucleation and propagation through accretionary forearcs. Geophys. Res. Lett. 38, L18303 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Goldsby, D. L. & Tullis, T. E. Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates. Science 334, 216–218 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Di Toro, G. et al. Fault lubrication during earthquakes. Nature 471, 494–498 (2011).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Kitajima, H., Chester, F. M. & Chester, J. S. Dynamic weakening of gouge layers in high‐speed shear experiments: assessment of temperature‐dependent friction, thermal pressurization, and flash heating. J. Geophys. Res. Solid Earth 116, B08309 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Brown, K. M. & Fialko, Y. ‘Melt welt’ mechanism of extreme weakening of gabbro at seismic slip rates. Nature 488, 638–641 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Proctor, B. & Di Toro, G. Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates. J. Geophys. Res. Solid Earth 119, 8107–8131 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Verberne, B. et al. Frictional properties and microstructure of calcite-rich fault gouges sheared at sub-seismic sliding velocities. Pure Appl. Geophys. 171, 2617–2640 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Boulton, C. et al. High-velocity frictional properties of Alpine Fault rocks: mechanical data, microstructural analysis, and implications for rupture propagation. J. Struct. Geol. 97, 71–92 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Scuderi, M., Collettini, C., Viti, C., Tinti, E. & Marone, C. Evolution of shear fabric in granular fault gouge from stable sliding to stick slip and implications for fault slip mode. Geology 45, 731–734 (2017).


    Google Scholar
     

  • Rowe, C. D. et al. Earthquake lubrication and healing explained by amorphous nanosilica. Nat. Commun. 10, 320 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bedford, J. D., Faulkner, D. R. & Lapusta, N. Fault rock heterogeneity can produce fault weakness and reduce fault stability. Nat. Commun. 13, 326 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McLaskey, G. C., Kilgore, B. D., Lockner, D. A. & Beeler, N. M. Laboratory generated M -6 earthquakes. Pure Appl. Geophys. 171, 2601–2615 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Rice, J. R. Heating and weakening of faults during earthquake slip. J. Geophys. Res. Solid Earth 111, B05311 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Noda, H. & Lapusta, N. Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature 493, 518–521 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jiang, J. & Lapusta, N. Deeper penetration of large earthquakes on seismically quiescent faults. Science 352, 1293–1297 (2016).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar
     

  • Rice, J. R. & Ruina, A. L. Stability of steady frictional slipping. J. Appl. Mech. 50, 343–349 (1983).

    ADS 
    MATH 
    Article 

    Google Scholar
     

  • Noda, H., Dunham, E. M. & Rice, J. R. Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels. J. Geophys. Res. Solid Earth 114, B07302 (2009).

    ADS 

    Google Scholar
     

  • Xia, K., Rosakis, A. J. & Kanamori, H. Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303, 1859–1861 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lu, X., Lapusta, N. & Rosakis, A. J. Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes. Proc. Natl Acad. Sci. USA 104, 18931–18936 (2007).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ben-David, O., Rubinstein, S. M. & Fineberg, J. Slip-stick and the evolution of frictional strength. Nature 463, 76–79 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Svetlizky, I. & Fineberg, J. Classical shear cracks drive the onset of dry frictional motion. Nature 509, 205–208 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Svetlizky, I. et al. Properties of the shear stress peak radiated ahead of rapidly accelerating rupture fronts that mediate frictional slip. Proc. Natl Acad. Sci. USA 113, 542–547 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rubino, V., Rosakis, A. & Lapusta, N. Understanding dynamic friction through spontaneously evolving laboratory earthquakes. Nat. Commun. 8, 15991 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guérin‐Marthe, S., Nielsen, S., Bird, R., Giani, S. & Di Toro, G. Earthquake nucleation size: evidence of loading rate dependence in laboratory faults. J. Geophys. Res. Solid Earth 124, 689–708 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Buijze, L., Guo, Y., Niemeijer, A., Ma, S. & Spiers, C. Nucleation of stick‐slip instability within a large‐scale experimental fault: effects of stress heterogeneities due to loading and gouge layer compaction. J. Geophys. Res. Solid Earth 125, e2019JB018429 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rubino, V., Rosakis, A. & Lapusta, N. Full-field ultrahigh-speed quantification of dynamic shear ruptures using digital image correlation. Exp. Mech. 59, 551–582 (2019).

    Article 

    Google Scholar
     

  • Rubino, V., Rosakis, A. & Lapusta, N. Spatiotemporal properties of sub‐Rayleigh and supershear ruptures inferred from full‐field dynamic imaging of laboratory experiments. J. Geophys. Res. Solid Earth 125, e2019JB018922 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Tal, Y., Rubino, V., Rosakis, A. J. & Lapusta, N. Illuminating the physics of dynamic friction through laboratory earthquakes on thrust faults. Proc. Natl Acad. Sci. USA 117, 21095–21100 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Madariaga, R. Dynamics of an expanding circular fault. Bull. Seismol. Soc. Am. 66, 639–666 (1976).

    Article 

    Google Scholar
     

  • Fossum, A. & Freund, L. Nonuniformly moving shear crack model of a shallow focus earthquake mechanism. J. Geophys. Res. 80, 3343–3347 (1975).

    ADS 
    Article 

    Google Scholar
     

  • Kaneko, Y. & Lapusta, N. Variability of earthquake nucleation in continuum models of rate‐and‐state faults and implications for aftershock rates. J. Geophys. Res. Solid Earth 113, B12312 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Gori, M., Rubino, V., Rosakis, A. & Lapusta, N. Dynamic rupture initiation and propagation in a fluid-injection laboratory setup with diagnostics across multiple temporal scales. Proc. Natl Acad. Sci. USA 118, e2023433118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Perry, S. M., Lambert, V. & Lapusta, N. Nearly magnitude‐invariant stress drops in simulated crack‐like earthquake sequences on rate‐and‐state faults with thermal pressurization of pore fluids. J. Geophys. Res. Solid Earth 125, e2019JB018597 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Palmer, A. C. & Rice, J. The growth of slip surfaces in the progressive failure of over-consolidated clay. Proc. R. Soc. A 332, 527–548 (1973).

    ADS 
    MATH 

    Google Scholar
     

  • Barras, F. et al. The emergence of crack-like behavior of frictional rupture: edge singularity and energy balance. Earth Planet. Sci. Lett. 531, 115978 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Yoon, C. E., Yoshimitsu, N., Ellsworth, W. L. & Beroza, G. C. Foreshocks and mainshock nucleation of the 1999 M w 7.1 Hector Mine, California, Earthquake. J. Geophys. Res. Solid Earth 124, 1569–1582 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Chen, K. et al. Cascading and pulse-like ruptures during the 2019 Ridgecrest earthquakes in the Eastern California Shear Zone. Nat. Commun. 11, 22 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kilb, D., Gomberg, J. & Bodin, P. Triggering of earthquake aftershocks by dynamic stresses. Nature 408, 570–574 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hill, D. P. & Prejean, S. in Treatise on Geophysics Vol. 4 (ed. Schubert, G.) 93–110 (Elsevier, 2015).

  • Brodsky, E. E. & van der Elst, N. J. The uses of dynamic earthquake triggering. Annu. Rev. Earth Planet. Sci. 42, 317–339 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Johnson, P. A., Savage, H., Knuth, M., Gomberg, J. & Marone, C. Effects of acoustic waves on stick–slip in granular media and implications for earthquakes. Nature 451, 57–60 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Perfettini, H., Schmittbuhl, J. & Cochard, A. Shear and normal load perturbations on a two‐dimensional continuous fault: 2. Dynamic triggering. J. Geophys. Res. Solid Earth 108, 2409 (2003).

    ADS 

    Google Scholar
     

  • Lui, S. K. & Lapusta, N. Modeling high stress drops, scaling, interaction, and irregularity of repeating earthquake sequences near Parkfield. J. Geophys. Res. Solid Earth 123, 10854–10879 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Avouac, J.-P. From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Annu. Rev. Earth Planet. Sci. 43, 233–271 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Simons, M. et al. The 2011 magnitude 9.0 Tohoku-Oki earthquake: mosaicking the megathrust from seconds to centuries. Science 332, 1421–1425 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mello, M., Bhat, H. S., Rosakis, A. J. & Kanamori, H. Identifying the unique ground motion signatures of supershear earthquakes: theory and experiments. Tectonophysics 493, 297–326 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Lu, X., Rosakis, A. J. & Lapusta, N. Rupture modes in laboratory earthquakes: effect of fault prestress and nucleation conditions. J. Geophys. Res. Solid Earth 115, B12302 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Sutton, M. A., Orteu, J. J. & Schreier, H. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications (Springer, 2009).

  • Tal, Y., Rubino, V., Rosakis, A. J. & Lapusta, N. Enhanced digital image correlation analysis of ruptures with enforced traction continuity conditions across interfaces. Appl. Sci. 9, 1625 (2019).

    Article 

    Google Scholar
     

  • Rosakis, A., Rubino, V. & Lapusta, N. Recent milestones in unraveling the full-field structure of dynamic shear cracks and fault ruptures in real-time: from photoelasticity to ultrahigh-speed digital image correlation. J. Appl. Mech. 87, 030801 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Buades, A., Coll, B. & Morel, J. M. Nonlocal image and movie denoising. Int. J. Comput. Vis. 76, 123–139 (2008).

    Article 

    Google Scholar
     

  • Rubino, V., Lapusta, N., Rosakis, A. J., Leprince, S. & Avouac, J. P. Static laboratory earthquake measurements with the digital image correlation method. Exp. Mech. 55, 77–94 (2015).

    Article 

    Google Scholar
     

  • Singh, R. P. & Parameswaran, V. An experimental investigation of dynamic crack propagation in a brittle material reinforced with a ductile layer. Opt. Lasers Eng. 40, 289–306 (2003).

    Article 

    Google Scholar
     

  • Rubin, A. M. & Ampuero, J. P. Earthquake nucleation on (aging) rate and state faults. J. Geophys. Res. Solid Earth 110, B11312 (2005).

    ADS 
    Article 

    Google Scholar
     

  • Marone, C. & Kilgore, B. Scaling of the critical slip distance for seismic faulting with shear strain in fault zones. Nature 362, 618–621 (1993).

    ADS 
    Article 

    Google Scholar
     

  • Dieterich, J. H. Potential for geophysical experiments in large scale tests. Geophys. Res. Lett. 8, 653–656 (1981).

    ADS 
    Article 

    Google Scholar
     

  • Okubo, P. G. & Dieterich, J. H. Effects of physical fault properties on frictional instabilities produced on simulated faults. J. Geophys. Res. Solid Earth 89, 5817–5827 (1984).

    Article 

    Google Scholar
     

  • Beeler, N. et al. Observed source parameters for dynamic rupture with non-uniform initial stress and relatively high fracture energy. J. Struct. Geol. 38, 77–89 (2012).

    ADS 
    Article 

    Google Scholar
     

  • McLaskey, G. C. Earthquake initiation from laboratory observations and implications for foreshocks. J. Geophys. Res. Solid Earth 124, 12882–12904 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Dieterich, J. H. Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. Solid Earth 84, 2161–2168 (1979).

    Article 

    Google Scholar
     

  • Dieterich, J. H. in Mechanical Behavior of Crustal Rocks: The Handin Volume (eds Carter, N. L., Friedman, M., Logan, J. M. & Stearns, D. W.) 103–120 (AGU, Washington DC, 1981).

  • Ruina, A. Slip instability and state variable friction laws. J. Geophys. Res. Solid Earth 88, 10359–10370 (1983).

    Article 

    Google Scholar
     

  • Blanpied, M., Lockner, D. & Byerlee, J. Fault stability inferred from granite sliding experiments at hydrothermal conditions. Geophys. Res. Lett. 18, 609–612 (1991).

    ADS 
    Article 

    Google Scholar
     

  • Blanpied, M. L., Lockner, D. A. & Byerlee, J. D. Frictional slip of granite at hydrothermal conditions. J. Geophys. Res. Solid Earth 100, 13045–13064 (1995).

    CAS 
    Article 

    Google Scholar
     

  • Kato, N. & Tullis, T. E. A composite rate-and state-dependent law for rock friction. Geophys. Res. Lett. 28, 1103–1106 (2001).

    ADS 
    Article 

    Google Scholar
     

  • Kato, N. & Tullis, T. E. Numerical simulation of seismic cycles with a composite rate-and state-dependent friction law. Bull. Seismol. Soc. Am. 93, 841–853 (2003).

    Article 

    Google Scholar
     



  • Source link