• Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494–499 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. H. & Park, J. W. Intrinsically stretchable organic light-emitting diodes. Sci. Adv. 7, eabd9715 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, J. et al. Elastomeric polymer light-emitting devices and displays. Nat. Photon. 7, 817–824 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • White, M. S. et al. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photon. 7, 811–816 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Larson, C. et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351, 1071–1074 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Textile display for electronic and brain-interfaced communications. Adv. Mater. 30, 1800323 (2018).


    Google Scholar
     

  • Liang, J. et al. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8, 1590–1600 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Bade, S. G. R. et al. Stretchable light-emitting diodes with organometal-halide-perovskite-polymer composite emitters. Adv. Mater. 29, 1607053 (2017).


    Google Scholar
     

  • Jiang, D. H. et al. Facile fabrication of stretchable touch-responsive perovskite light-emitting diodes using robust stretchable composite electrodes. ACS Appl. Mater. Interfaces 12, 14408–14415 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. F. et al. Stretchable organometal-halide-perovskite quantum-dot light-emitting diodes. Adv. Mater. 31, 1807516 (2019).


    Google Scholar
     

  • Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Y. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Flexible active-matrix electronic ink display. Nature 423, 136 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nat. Photon. 9, 233–238 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Rein, M. et al. Diode fibres for fabric-based optical communications. Nature 560, 214–218 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Steude, A., Witts, E. C., Miles, G. B. & Gather, M. C. Arrays of microscopic organic LEDs for high-resolution optogenetics. Sci. Adv. 2, e1600061 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, D. et al. Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation. Proc. Natl Acad. Sci. USA 117, 21138–21146 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, S., Na, Y., Lee, J. & Choi, K. C. Textile-OLEDs with high wearing comfort used for fashion displays and phototherapy applications. Proc. Int. Conf. Display Technol. (ICDT) 52, 279 (2020).


    Google Scholar
     

  • Yu, H. et al. Direct acoustic imaging using a piezoelectric organic light-emitting diode. ACS Appl. Mater. Interfaces 12, 36409–36416 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Park, S. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561, 516–521 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin, D. et al. Two-dimensional stretchable organic light-emitting devices with high efficiency. ACS Appl. Mater. Interfaces 8, 31166–31171 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Park, S. I. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kee, S. et al. Highly deformable and see-through polymer light-emitting diodes with all-conducting-polymer electrodes. Adv. Mater. 30, 1703437 (2018).


    Google Scholar
     

  • Park, J. et al. Highly customizable all solution-processed polymer light emitting diodes with inkjet printed Ag and transfer printed conductive polymer electrodes. Adv. Funct. Mater. 29, 1902412 (2019).


    Google Scholar
     

  • Abbaszadeh, D. et al. Elimination of charge carrier trapping in diluted semiconductors. Nat. Mater. 15, 628–633 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbaszadeh, D. & Blom, P. W. Efficient blue polymer light-emitting diodes with electron-dominated transport due to trap dilution. Adv. Electron. Mater. 2, 1500406 (2016).


    Google Scholar
     

  • Choong, C. L. et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 26, 3451–3458 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. H. et al. Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Funct. Mater. 21, 1076–1081 (2011).

    CAS 

    Google Scholar
     

  • Vosgueritchian, M., Lipomi, D. J. & Bao, Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 22, 421–428 (2012).

    CAS 

    Google Scholar
     

  • Jiang, Y. et al. Topological supramolecular network enabled highly conductive and stretchable organic bioelectronics. Preprint at https://doi.org/10.1101/2022.01.16.476423 (2022).

  • Mengistie, D. A., Wang, P. C. & Chu, C. W. Effect of molecular weight of additives on the conductivity of PEDOT:PSS and efficiency for ITO-free organic solar cells. J. Mater. Chem. A 1, 9907–9915 (2013).


    Google Scholar
     

  • Bolink, H. J., Coronado, E., Orozco, J. & Sessolo, M. Efficient polymer light-emitting diode using air-stable metal oxides as electrodes. Adv. Mater. 21, 79–82 (2009).

    CAS 

    Google Scholar
     

  • Fong, H. H., Papadimitratos, A. & Malliaras, G. G. Nondispersive hole transport in a polyfluorene copolymer with a mobility of 0.01 cm2 V−1 s−1. Appl. Phys. Lett. 89, 172116 (2006).

    ADS 

    Google Scholar
     

  • Ohisa, S. et al. Conjugated polyelectrolyte blend with polyethyleneimine ethoxylated for thickness-insensitive electron injection layers in organic light-emitting devices. ACS Appl. Mater. Interfaces 10, 17318–17326 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Y. et al. A universal method to produce low-work function electrodes for organic electronics. Science 336, 327–332 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gann, E. et al. Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis. Rev. Sci. Instrum. 83, 045110 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Collins, B. A. et al. Polarized X-ray scattering reveals non-crystalline orientational ordering in organic films. Nat. Mater. 11, 536–543 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • De Pauli, M. et al. Understanding molecular interactions in light-emitting polymer bilayers: the role of solvents and molecular structure on the interface quality. Appl. Phys. Lett. 104, 163301 (2014).

    ADS 

    Google Scholar
     

  • Urquhart, S. G. et al. Near-edge X-ray absorption fine structure spectroscopy of MDI and TDI polyurethane polymers. J. Phys. Chem. B 103, 4603–4610 (1999).

    CAS 

    Google Scholar
     



  • Source link