• Abe, M. et al. GATA3 is essential for separating patterning domains during facial morphogenesis. Development 148, dev199534 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tsarovina, K. et al. Essential role of Gata transcription factors in sympathetic neuron development. Development 131, 4775–4786 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ralston, A. et al. Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137, 395–403 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Romano, R. A. et al. ΔNp63 knockout mice reveal its indispensable role as a master regulator of epithelial development and differentiation. Development 139, 772–782 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pattison, J. M. et al. Retinoic acid and BMP4 cooperate with p63 to alter chromatin dynamics during surface epithelial commitment. Nat. Genet. 50, 1658–1665 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chikh, A. et al. Expression of GATA-3 in epidermis and hair follicle: relationship to p63. Biochem. Biophys. Res. Commun. 361, 1–6 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ellis, C., Pai, G. S. & Wine Lee, L. Atypical aplasia cutis in association with Xia Gibbs syndrome. Pediatr. Dermatol. 38, 533–535 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Jiang, Y. et al. The phenotypic spectrum of Xia-Gibbs syndrome. Am. J. Med. Genet. A 176, 1315–1326 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ritter, A. L. et al. Variable clinical manifestations of Xia-Gibbs syndrome: findings of consecutively identified cases at a single children’s hospital. Am. J. Med. Genet. A 176, 1890–1896 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tchieu, J. et al. A modular platform for differentiation of human PSCs into all major ectodermal lineages. Cell Stem Cell 21, 399–410 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liang, Y. C. et al. Folding keratin gene clusters during skin regional specification. Dev. Cell 53, 561–576 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kelly, O. G. & Melton, D. A. Induction and patterning of the vertebrate nervous system. Trends Genet. 11, 273–278 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liem, K. F., Tremml, G., Roelink, H. & Jessell, T. M. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969–979 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Larsen, W. J. & Sherman, L. S. in Human Embryology 3rd edn 85–102; 126–130 (Churchill Livingstone, 2002).

  • Hota, S. K. & Bruneau, B. G. ATP-dependent chromatin remodeling during mammalian development. Development 143, 2882–2897 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pauli, A., Rinn, J. L. & Schier, A. F. Non-coding RNAs as regulators of embryogenesis. Nat. Rev. Genet. 12, 136–149 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu, J. et al. Transcriptional dysregulation in NIPBL and cohesin mutant human cells. PLoS Biol. 7, e1000119 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Li, L. et al. TFAP2C- and p63-dependent networks sequentially rearrange chromatin landscapes to drive human epidermal lineage commitment. Cell Stem Cell 24, 271–284 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, W. & Cornell, R. A. Redundant activities of Tfap2a and Tfap2c are required for neural crest induction and development of other non-neural ectoderm derivatives in zebrafish embryos. Dev. Biol. 304, 338–354 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sebastiano, V. et al. Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci. Transl. Med. 6, 264ra163 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Chahrour, M. & Zoghbi, H. Y. The story of Rett syndrome: from clinic to neurobiology. Neuron 56, 422–437 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sarogni, P., Pallotta, M. M. & Musio, A. Cornelia de Lange syndrome: from molecular diagnosis to therapeutic approach. J. Med. Genet. 57, 289–295 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ostapcuk, V. et al. Activity-dependent neuroprotective protein recruits HP1 and CHD4 to control lineage-specifying genes. Nature 557, 739–743 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Xia, F. et al. De novo truncating mutations in AHDC1 in individuals with syndromic expressive language delay, hypotonia, and sleep apnea. Am. J. Hum. Genet. 94, 784–789 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Díaz-Ordoñez, L., Ramirez-Montaño, D., Candelo, E., Cruz, S. & Pachajoa, H. Syndromic intellectual disability caused by a novel truncating variant in AHDC1: a case report. Iran. J. Med. Sci. 44, 257–261 (2019).

    PubMed 

    Google Scholar
     

  • Savic, D. et al. CETCh-seq: CRISPR epitope tagging ChIP-seq of DNA-binding proteins. Genome Res. 25, 1581–1589 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919–922 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ramanathan, M. et al. RNA-protein interaction detection in living cells. Nat. Methods 15, 207–212 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Roux, K. J., Kim, D. I. & Burke, B. BioID: a screen for protein-protein interactions. Curr. Protoc. Protein Sci. 2013, 19.23.1–19.23.14 (2013).


    Google Scholar
     

  • Villaseñor, R. et al. ChromID identifies the protein interactome at chromatin marks. Nat. Biotechnol. 38, 728–736 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Saksouk, N. et al. Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation. Mol. Cell 56, 580–594 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaaij, L. J. T., Mohn, F., van der Weide, R. H., de Wit, E. & Bühler, M. The ChAHP complex counteracts chromatin looping at CTCF sites that emerged from SINE expansions in mouse. Cell 178, 1437–1451 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maurano, M. T. et al. Role of DNA methylation in modulating transcription factor occupancy. Cell Rep. 12, 1184–1195 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, H. et al. Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res. 22, 1680–1688 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lu, M. F., Pressman, C., Dyer, R., Johnson, R. L. & Martin, J. F. Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature 401, 276–278 (1999).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Günschmann, C. et al. Insulin/IGF-1 controls epidermal morphogenesis via regulation of FoxO-mediated p63 inhibition. Dev. Cell 26, 176–187 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Li, A. et al. Deciphering principles of morphogenesis from temporal and spatial patterns on the integument. Dev. Dyn. 244, 905–920 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Niessen, M. T., Iden, S. & Niessen, C. M. The in vivo function of mammalian cell and tissue polarity regulators—how to shape and maintain the epidermal barrier. J. Cell Sci. 125, 3501–3510 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Delaney, C. et al. Combinatorial prediction of marker panels from single‐cell transcriptomic data. Mol. Syst. Biol. 15, e9005 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kurek, D., Garinis, G. A., van Doorninck, J. H., van der Wees, J. & Grosveld, F. G. Transcriptome and phenotypic analysis reveals Gata3-dependent signalling pathways in murine hair follicles. Development 134, 261–272 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaufman, C. K. et al. GATA-3: An unexpected regulator of cell lineage determination in skin. Genes Dev. 17, 2108–2122 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bardhan, T. et al. Gata3 is required for the functional maturation of inner hair cells and their innervation in the mouse cochlea. J. Physiol. 597, 3389–3406 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Koch, P. J. et al. Targeted disruption of the pemphigus vulgaris antigen (desmoglein 3) gene in mice causes loss of keratinocyte cell adhesion with a phenotype similar to pemphigus vulgaris. J. Cell Biol. 137, 1091–1102 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cheng, X. et al. Two Chinese Xia-Gibbs syndrome patients with partial growth hormone deficiency. Mol. Genet. Genomic Med. 7, e00596 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Yang, S. et al. Rare mutations in AHDC1 in patients with obstructive sleep apnea. Biomed. Res. Int. 2019, 5907361 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Acero, M. & Acosta, J. Whole-exome sequencing identifies a de novo AHDC1 mutation in a Colombian patient with Xia-Gibbs syndrome. Mol. Syndromol. 8, 308–312 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Qin, Y., Yang, S., Li, K. & Wei, Y. Extreme trait next generation sequencing identifies AHDC1 as a novel candidate gene in obstructive sleep apnea. Sleep 41, A8–A9 (2018).

    Article 

    Google Scholar
     

  • Cardoso-Dos-Santos, A. C. et al. Novel AHDC1 gene mutation in a Brazilian individual: implications of Xia-Gibbs syndrome. Mol. Syndromol. 11, 24–29 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Billingham, R. E. & Silvers, W. K. Studies on the conservation of epidermal specificies of skin and certain mucosas in adult mammals. J. Exp. Med. 125, 429–446 (1967).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dhouailly, D., Prin, F., Kanzler, B., Viallet, J. P. & Chuong, C. Molecular Basis of Epithelial Appendage Morphogenesis (Landes Biosciences, 1998).

  • Wu, H. J. et al. Estrogen modulates mesenchyme-epidermis interactions in the adult nipple. Development 144, 1498–1509 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Helsmoortel, C. et al. A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP. Nat. Genet. 46, 380–384 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Khayat, M. M. et al. AHDC1 missense mutations in Xia-Gibbs syndrome. Hum. Genet. Genomics Adv. 2, 100049 (2021).

    Article 

    Google Scholar
     

  • Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 2015, 21.29.1–21.29.9 (2015).


    Google Scholar
     

  • Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 14, 128 (2013).

    Article 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779 (2011).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mellacheruvu, D. et al. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat. Methods 10, 730–736 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Choi, H. et al. SAINT: probabilistic scoring of affinity purificationg-mass spectrometry data. Nat. Methods 8, 70–73 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bhattacharyya, S., Chandra, V., Vijayanand, P. & Ay, F. Identification of significant chromatin contacts from HiChIP data by FitHiChIP. Nat. Commun. 10, 4221 (2019).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with ChromHMM. Nat. Protoc. 12, 2478–2492 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     



  • Source link