• Augustin, H. G. & Koh, G. Y. Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology. Science 357, eaal2379 (2017).

    PubMed 

    Google Scholar
     

  • Petrova, T. V. & Koh, G. Y. Organ-specific lymphatic vasculature: from development to pathophysiology. J. Exp. Med. 215, 35–49 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semo, J., Nicenboim, J. & Yaniv, K. Development of the lymphatic system: new questions and paradigms. Development 143, 924–935 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Gutierrez-Miranda, L. & Yaniv, K. Cellular origins of the lymphatic endothelium: implications for cancer lymphangiogenesis. Front. Physiol. 11, 577584 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parichy, D. M., Elizondo, M. R., Mills, M. G., Gordon, T. N. & Engeszer, R. E. Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish. Dev. Dyn. 238, 2975–3015 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marí-Beffa, M. & Murciano, C. Dermoskeleton morphogenesis in zebrafish fins. Dev. Dyn. 239, 2779–2794 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogel, W. O. P. & Claviez, M. Vascular specialization in fish, but no evidence for lymphatics. Z. Naturforsch. 36, 490–492 (1981).


    Google Scholar
     

  • Steffensen, J. F., Lomholt, J. P. & Vogel, W. O. P. In vivo observations on a specialized microvasculature, the primary and secondary vessels in fishes. Acta Zool. 67, 193–200 (1986).


    Google Scholar
     

  • Olson, K. R. Secondary circulation in fish: anatomical organization and physiological significance. J. Exp. Zool. 275, 172–185 (1996).


    Google Scholar
     

  • Jensen, L. D. E. et al. Nitric oxide permits hypoxia-induced lymphatic perfusion by controlling arterial-lymphatic conduits in zebrafish and glass catfish. Proc. Natl Acad. Sci. USA 106, 18408–18413 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Rummer, J. L., Wang, S., Steffensen, J. F. & Randall, D. J. Function and control of the fish secondary vascular system, a contrast to mammalian lymphatic systems. J. Exp. Biol. 217, 751–757 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Karpanen, T. & Schulte-Merker, S. in Methods in Cell Biology (eds. Detrich, H. W. et al.) Vol. 105, 223–238 (Academic, 2011).

  • Jung, H. M. et al. Development of the larval lymphatic system in zebrafish. Development 144, 2070–2081 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gancz, D., Perlmoter, G. & Yaniv, K. Formation and growth of cardiac lymphatics during embryonic development, heart regeneration, and disease. Cold Spring Harb. Perspect. Biol. 12, a037176 (2019).


    Google Scholar
     

  • Potente, M. & Makinen, T. Vascular heterogeneity and specialization in development and disease. Nat. Rev. Mol. Cell Biol. 18, 477–494 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Yaniv, K. et al. Live imaging of lymphatic development in the zebrafish. Nat. Med. 12, 711–716 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Dunwoodie, S. L. The role of hypoxia in development of the mammalian embryo. Dev. Cell 17, 755–773 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Akiva, A. et al. On the pathway of mineral deposition in larval zebrafish caudal fin bone. Bone 75, 192–200 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Bennet, M. et al. Simultaneous Raman microspectroscopy and fluorescence imaging of bone mineralization in living zebrafish larvae. Biophys. J. 106, L17–L19 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, L. et al. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc. Natl Acad. Sci. USA 111, 1403–1408 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kobayashi, I. et al. Jam1a–Jam2a interactions regulate haematopoietic stem cell fate through Notch signalling. Nature 512, 319–323 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azimi, M. S. et al. Lymphatic-to-blood vessel transition in adult microvascular networks: a discovery made possible by a top-down approach to biomimetic model development. Microcirculation 27, e12595 (2020).

    PubMed 

    Google Scholar
     

  • Johnson, N. C. et al. Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev. 22, 3282–3291 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, W. & Oliver, G. Lymphatic endothelial cell plasticity in development and disease. Physiology 32, 444–452 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C.-Y. et al. Blood flow reprograms lymphatic vessels to blood vessels. J. Clin. Invest. 122, 2006–2017 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. et al. Acute brain vascular regeneration occurs via lymphatic transdifferentiation. Dev. Cell 56, 3115–3127 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. et al. Impaired angiopoietin/Tie2 signaling compromises Schlemm’s canal integrity and induces glaucoma. J. Clin. Invest. 127, 3877–3896.

  • Corada, M. et al. Sox17 is indispensable for acquisition and maintenance of arterial identity. Nat. Commun. 4, 2609 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • Gancz, D. et al. Distinct origins and molecular mechanisms contribute to lymphatic formation during cardiac growth and regeneration. eLife 8, e44153 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicenboim, J. et al. Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature 522, 56–61 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hen, G. et al. Venous-derived angioblasts generate organ-specific vessels during zebrafish embryonic development. Dev. Camb. Engl. 142, 4266–4278 (2015).

    CAS 

    Google Scholar
     

  • Keren-Shaul, H. et al. MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing. Nat. Protoc. 14, 1841–1862 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. 37, 1482–1492 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genom. 19, 477 (2018).


    Google Scholar
     

  • Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harikumar, A. et al. Embryonic stem cell differentiation is regulated by SET through interactions with p53 and β-catenin. Stem Cell Rep. 15, 1260–1274 (2020).

    CAS 

    Google Scholar
     

  • Zhou, X. et al. HMGB2 regulates satellite-cell-mediated skeletal muscle regeneration through IGF2BP2. J. Cell Sci. 129, 4305–4316 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Garza-Manero, S. et al. Maintenance of active chromatin states by HMGN2 is required for stem cell identity in a pluripotent stem cell model. Epigenetics Chromatin 12, 73 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao, X. et al. CSNK1a1 regulates PRMT1 to maintain the progenitor state in self-renewing somatic tissue. Dev. Cell 43, 227–239 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jerafi-Vider, A. et al. VEGFC/FLT4-induced cell-cycle arrest mediates sprouting and differentiation of venous and lymphatic endothelial cells. Cell Rep. 35, 109255 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, M. et al. Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors. Development 143, 3785–3795 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, S. P., Holdway, J. E. & Poss, K. D. Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev. Cell 22, 879–886 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silvent, J. et al. Zebrafish skeleton development: high resolution micro-CT and FIB-SEM block surface serial imaging for phenotype identification. PLoS ONE 12, e0177731 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das, R. N. & Yaniv, K. Discovering new progenitor cell populations through lineage tracing and in vivo imaging. Cold Spring Harb. Perspect. Biol. 12, a035618 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Vogel, W. O. P. Zebrafish and lymphangiogenesis: a reply. Anat. Sci. Int. 85, 118–119 (2010).

    PubMed 

    Google Scholar
     

  • Gur-Cohen, S. et al. Stem cell-driven lymphatic remodeling coordinates tissue regeneration. Science 366, 1218–1225 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Louveau, A. et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci. 21, 1380–1391 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Da Mesquita, S. et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560, 185–191 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pavlov, V. et al. Hydraulic control of tuna fins: a role for the lymphatic system in vertebrate locomotion. Science 357, 310–314 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliver, G., Kipnis, J., Randolph, G. J. & Harvey, N. L. The lymphatic vasculature in the 21st century: novel functional roles in homeostasis and disease. Cell 182, 270–296 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pawlak, J. B. et al. Lymphatic mimicry in maternal endothelial cells promotes placental spiral artery remodeling. J. Clin. Invest. 129, 4912–4921.

  • Song, E. et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 577, 629–630 (2020).


    Google Scholar
     

  • Jin, S.-W., Beis, D., Mitchell, T., Chen, J.-N. & Stainier, D. Y. R. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132, 5199–5209 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Matsuoka, R. L. et al. Radial glia regulate vascular patterning around the developing spinal cord. eLife 5, e20253 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spoorendonk, K. M. et al. Retinoic acid and Cyp26b1 are critical regulators of osteogenesis in the axial skeleton. Development 135, 3765–3774 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Shin, J., Poling, J., Park, H.-C. & Appel, B. Notch signaling regulates neural precursor allocation and binary neuronal fate decisions in zebrafish. Development 134, 1911–1920 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Davison, J. M. et al. Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. Dev. Biol. 304, 811–824 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avraham-Davidi, I. et al. ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1. Nat. Med. 18, 967–973 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White, R. M. et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2, 183–189 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villefranc, J. A., Amigo, J. & Lawson, N. D. Gateway compatible vectors for analysis of gene function in the zebrafish. Dev. Dyn. 236, 3077–3087 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hesselson, D., Anderson, R. M., Beinat, M. & Stainier, D. Y. Distinct populations of quiescent and proliferative pancreatic beta-cells identified by HOTcre mediated labeling. Proc. Natl Acad. Sci. USA 106, 14896–14901 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suster, M. L., Abe, G., Schouw, A. & Kawakami, K. Transposon-mediated BAC transgenesis in zebrafish. Nat. Protoc. 6, 1998–2021 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Dahlem, T. J. et al. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet. 8, e1002861 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, Y. et al. Vitamin D stimulates cardiomyocyte proliferation and controls organ size and regeneration in zebrafish. Dev. Cell 48, 853–863 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oehlers, S. H. et al. Interception of host angiogenic signalling limits mycobacterial growth. Nature 517, 612–615 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lyubimova, A. et al. Single-molecule mRNA detection and counting in mammalian tissue. Nat. Protoc. 8, 1743–1758 (2013).

    PubMed 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics 35, 2084–2092 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Hoffman, D. et al. A non-classical monocyte-derived macrophage subset provides a splenic replication niche for intracellular Salmonella. Immunity 54, 2712–2723 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manco, R. et al. Clump sequencing exposes the spatial expression programs of intestinal secretory cells. Nat. Commun. 12, 3074 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kult, S. et al. Bi-fated tendon-to-bone attachment cells are regulated by shared enhancers and KLF transcription factors. eLife 10, e55361 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McFarland, A. P. et al. Multi-tissue single-cell analysis deconstructs the complex programs of mouse natural killer and type 1 innate lymphoid cells in tissues and circulation. Immunity 54, 1320–1337 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link