• Mangles, S. P. D. et al. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535–538 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Faure, J. et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737–739 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Litos, M. et al. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator. Nature 515, 92–95 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gonsalves, A. J. et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 084801 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nakajima, K. Towards a table-top free-electron laser. Nat. Phys. 4, 92–93 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Hartmann, N. et al. Attosecond time–energy structure of X-ray free-electron laser pulses. Nat. Photonics 12, 215–220 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Pandey, S. et al. Time-resolved serial femtosecond crystallography at the European XFEL. Nat. Methods 17, 73–78 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Pompili, R. et al. Energy spread minimization in a beam-driven plasma wakefield accelerator. Nat. Phys. 17, 499–503 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Assmann, R. W. et al. Eupraxia conceptual design report. Eur. Phys. J. Spec. Top. 229, 3675–4284 (2020).

    Article 

    Google Scholar
     

  • Argyropoulos, T. et al. Design, fabrication, and high-gradient testing of an X-band, traveling-wave accelerating structure milled from copper halves. Phys. Rev. Accel. Beams 21, 061001 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Modena, A. et al. Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606–608 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sprangle, P., Esarey, E. & Krall, J. Laser driven electron acceleration in vacuum, gases, and plasmas. Phys. Plasmas 3, 2183–2190 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Blumenfeld, I. et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 445, 741–744 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • André, T. et al. Control of laser plasma accelerated electrons for light sources. Nat. Commun. 9, 1334 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Deng, A. et al. Generation and acceleration of electron bunches from a plasma photocathode. Nat. Phys. 15, 1156–1160 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Lindstrøm, C. A. et al. Energy-spread preservation and high efficiency in a plasma-wakefield accelerator. Phys. Rev. Lett. 126, 014801 (2021).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Kirchen, M. et al. Optimal beam loading in a laser-plasma accelerator. Phys. Rev. Lett. 126, 174801 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, W. et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature 595, 516–520 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen, P. et al. Acceleration of electrons by the interaction of a bunched electron beam with a plasma. Phys. Rev. Lett. 54, 693 (1985).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ferrario, M. et al. SPARC_LAB present and future. Nucl. Instrum. Methods B 309, 183–188 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ferrario, M. et al. Laser comb with velocity bunching: preliminary results at SPARC. Nucl. Instrum. Methods A 637, S43–S46 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Serafini, L. & Ferrario, M. Velocity bunching in photo-injectors. AIP Conf. Proc. 581, 87–106 (2001).

    ADS 
    Article 

    Google Scholar
     

  • Pompili, R. et al. Femtosecond timing-jitter between photo-cathode laser and ultra-short electron bunches by means of hybrid compression. New J. Phys. 18, 083033 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Cianchi, A. et al. Six-dimensional measurements of trains of high brightness electron bunches. Phys. Rev. Accel. Beams 18, 082804 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Biagioni, A. et al. Gas-filled capillary-discharge stabilization for plasma-based accelerators by means of a laser pulse. Plasma Phys. Control. Fusion 63, 115013 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Pompili, R. et al. Compact and tunable focusing device for plasma wakefield acceleration. Rev. Sci. Instrum. 89, 033302 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Romeo, S. et al. Beam-based characterization of plasma density in a capillary-discharge waveguide. AIP Adv. 11, 065217 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Shpakov, V. et al. First emittance measurement of the beam-driven plasma wakefield accelerated electron beam. Phys. Rev. Accel. Beams 24, 051301 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Marocchino, A. et al. Efficient modeling of plasma wakefield acceleration in quasi-non-linear-regimes with the hybrid code Architect. Nucl. Instrum. Methods Phys. Res. A 829, 386–391 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Rosenzweig, J. B. et al. Plasma wakefields in the quasi‐nonlinear regime. AIP Conf. Proc. 1299, 500–504 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Reiche, S. GENESIS 1.3: a fully 3D time-dependent FEL simulation code. Nucl. Instrum. Methods Phys. Res. A 429, 243–248 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Gorobtsov, O. Y. et al. Statistical properties of a free-electron laser revealed by Hanbury Brown–Twiss interferometry. Phys. Rev. A 95, 023843 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Pompili, R. et al. Time-resolved study of nonlinear photoemission in radio-frequency photoinjectors. Opt. Lett. 46, 2844–2847 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ferrario, M. et al. Experimental demonstration of emittance compensation with velocity bunching. Phys. Rev. Lett. 104, 054801 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Behrens, C. & Gerth, C. On the limitations of longitudinal phase space measurements using a transverse deflecting structure. Proc. DIPAC09 TUPB44 (2009).

  • Löhl, F. & Schreiber, S. et al. Measurements of the transverse emittance at the FLASH injector at DESY. Phys. Rev. Accel. Beams 9, 092802 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Pompili, R. et al. Focusing of high-brightness electron beams with active-plasma lenses. Phys. Rev. Lett. 121, 174801 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Biagioni, A. et al. Temperature analysis in the shock waves regime for gas-filled plasma capillaries in plasma-based accelerators. J. Instrum. 14, C03002 (2019).

    Article 

    Google Scholar
     

  • Barov, N. & Rosenzweig, J. B. Propagation of short electron pulses in underdense plasmas. Phys. Rev. E 49, 4407 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Rossetti Conti, M. et al. Electron beam transfer line design for plasma driven free electron lasers. Nucl. Instrum. Methods Phys. Res. A 909, 84–89 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Quattromini, M. et al. Focusing properties of linear undulators. Phys. Rev. Accel. Beams 15, 080704 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Hogan, M. et al. Measurements of high gain and intensity fluctuations in a self-amplified, spontaneous-emission free-electron laser. Phys. Rev. Lett. 80, 289 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Massimo, F., Atzeni, S. & Marocchino, A. Comparisons of time explicit hybrid kinetic-fluid code Architect for plasma wakefield acceleration with a full PIC code. J. Comput. Phys. 327, 841–850 (2016).

    ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Tzoufras, M. et al. Beam loading in the nonlinear regime of plasma-based acceleration. Phys. Rev. Lett. 101, 145002 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chao, A. W. et al. Handbook of Accelerator Physics and Engineering (World Scientific, 2013).

  • Ariniello, R. et al. Transverse beam dynamics in a plasma density ramp. Phys. Rev. Accel. Beams 22, 041304 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ferrario, M. et al. EuPRAXIA@SPARC_LAB design study towards a compact FEL facility at LNF. Nucl. Instrum. Methods Phys. Res. A 909, 134–138 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Vaccarezza, C. et al. EUPRAXIA@SPARC_Lab: beam dynamics studies for the X-band Linac. Nucl. Instrum. Methods Phys. Res. A 909, 314–317 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Petrillo, V. et al. Free electron laser in the water window with plasma driven electron beams. Nucl. Instrum. Methods Phys. Res. A 909, 303–308 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Huang, Z. & Kim, K. J. Review of x-ray free-electron laser theory. Phys. Rev. Accel. Beams 10, 034801 (2007).

    ADS 
    Article 

    Google Scholar
     



  • Source link