• Faisal, A. A., Selen, L. P. & Wolpert, D. M. Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lutcke, H., Margolis, D. J. & Helmchen, F. Steady or changing? Long-term monitoring of neuronal population activity. Trends Neurosci. 36, 375–384 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rumyantsev, O. I. et al. Fundamental bounds on the fidelity of sensory cortical coding. Nature 580, 100–105 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stein, R. B., Gossen, E. R. & Jones, K. E. Neuronal variability: noise or part of the signal? Nat. Rev. Neurosci. 6, 389–397 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zohary, E., Shadlen, M. N. & Newsome, W. T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Driscoll, L. N., Pettit, N. L., Minderer, M., Chettih, S. N. & Harvey, C. D. Dynamic reorganization of neuronal activity patterns in parietal cortex. Cell 170, 986–999 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Greicius, M. D., Supekar, K., Menon, V. & Dougherty, R. F. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19, 72–78 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Rosenberg, M. D. et al. A neuromarker of sustained attention from whole-brain functional connectivity. Nat. Neurosci. 19, 165–171 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Montijn, J. S., Meijer, G. T., Lansink, C. S. & Pennartz, C. M. Population-level neural codes are robust to single-neuron variability from a multidimensional coding perspective. Cell Rep. 16, 2486–2498 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Semedo, J. D., Zandvakili, A., Machens, C. K., Byron, M. Y. & Kohn, A. Cortical areas interact through a communication subspace. Neuron 102, 249–259 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, 255 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Abbott, L. F. & Dayan, P. The effect of correlated variability on the accuracy of a population code. Neural Comput. 11, 91–101 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Averbeck, B. B. & Lee, D. Effects of noise correlations on information encoding and decoding. J. Neurophysiol. 95, 3633–3644 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • Moreno-Bote, R. et al. Information-limiting correlations. Nat. Neurosci. 17, 1410–1417 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Carrillo-Reid, L., Han, S., Yang, W., Akrouh, A. & Yuste, R. Controlling visually guided behavior by holographic recalling of cortical ensembles. Cell 178, 447–457 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Graf, A. B., Kohn, A., Jazayeri, M. & Movshon, J. A. Decoding the activity of neuronal populations in macaque primary visual cortex. Nat. Neurosci. 14, 239–245 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xia, J., Marks, T. D., Goard, M. J. & Wessel, R. Stable representation of a naturalistic movie emerges from episodic activity with gain variability. Nat. Commun. 12, 5170 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gonzalez, W. G., Zhang, H., Harutyunyan, A. & Lois, C. Persistence of neuronal representations through time and damage in the hippocampus. Science 365, 821–825 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Deitch, D., Rubin, A. & Ziv, Y. Representational drift in the mouse visual cortex. Curr. Biol. 31, 4327–4339 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sridharan, D., Levitin, D. J. & Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl Acad. Sci. USA 105, 12569–12574 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Allen, W. E. et al. Thirst regulates motivated behavior through modulation of brainwide neural population dynamics. Science 364, 253 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Niell, C. M. & Stryker, M. P. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65, 472–479 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Montani, F., Kohn, A., Smith, M. A. & Schultz, S. R. The role of correlations in direction and contrast coding in the primary visual cortex. J. Neurosci. 27, 2338–2348 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Goard, M. J., Pho, G. N., Woodson, J. & Sur, M. Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions. eLife 5, e13764 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Poort, J. et al. Learning enhances sensory and multiple non-sensory representations in primary visual cortex. Neuron 86, 1478–1490 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kanitscheider, I., Coen-Cagli, R. & Pouget, A. Origin of information-limiting noise correlations. Proc. Natl Acad. Sci. USA 112, E6973–E6982 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yu, Y., Stirman, J. N., Dorsett, C. R. & Smith, S. L. Mesoscale correlation structure with single cell resolution during visual coding. Preprint at bioRxiv https://doi.org/10.1101/469114 (2018).

  • Gregoriou, G. G., Gotts, S. J. & Desimone, R. Cell-type-specific synchronization of neural activity in FEF with V4 during attention. Neuron 73, 581–594 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gregoriou, G. G., Gotts, S. J., Zhou, H. & Desimone, R. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324, 1207–1210 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ruff, D. A. & Cohen, M. R. Attention increases spike count correlations between visual cortical areas. J. Neurosci. 36, 7523–7534 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • van Kempen, J. et al. Top-down coordination of local cortical state during selective attention. Neuron 109, 894–904 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Chen, J. L., Voigt, F. F., Javadzadeh, M., Krueppel, R. & Helmchen, F. Long-range population dynamics of anatomically defined neocortical networks. eLife 5, e14679 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Doiron, B., Litwin-Kumar, A., Rosenbaum, R., Ocker, G. K. & Josic, K. The mechanics of state-dependent neural correlations. Nat. Neurosci. 19, 383–393 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Churchland, M. M. et al. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat. Neurosci. 13, 369–378 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wagner, M. J. et al. Shared cortex-cerebellum dynamics in the execution and learning of a motor task. Cell 177, 669–682 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement across the mouse brain. Nature 576, 266–273 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. A. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13, 87–100 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Keller, A. J., Roth, M. M. & Scanziani, M. Feedback generates a second receptive field in neurons of the visual cortex. Nature 582, 545–549 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bondy, A. G., Haefner, R. M. & Cumming, B. G. Feedback determines the structure of correlated variability in primary visual cortex. Nat. Neurosci. 21, 598–606 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zipser, K., Lamme, V. A. & Schiller, P. H. Contextual modulation in primary visual cortex. J. Neurosci. 16, 7376–7389 (1996).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mashour, G. A., Roelfsema, P., Changeux, J. P. & Dehaene, S. Conscious processing and the global neuronal workspace hypothesis. Neuron 105, 776–798 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cohen, M. X. & Ranganath, C. Reinforcement learning signals predict future decisions. J. Neurosci. 27, 371–378 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bassett, D. S. & Bullmore, E. Small-world brain networks. Neuroscientist 12, 512–523 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Garrett, M. E., Nauhaus, I., Marshel, J. H. & Callaway, E. M. Topography and areal organization of mouse visual cortex. J. Neurosci. 34, 12587–12600 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kalatsky, V. A. & Stryker, M. P. New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron 38, 529–545 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marshel, J. H., Garrett, M. E., Nauhaus, I. & Callaway, E. M. Functional specialization of seven mouse visual cortical areas. Neuron 72, 1040–1054 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhuang, J. et al. An extended retinotopic map of mouse cortex. eLife 6, e18372 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lecoq, J. et al. Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging. Nat. Neurosci. 17, 1825–1829 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thevenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mukamel, E. A., Nimmerjahn, A. & Schnitzer, M. J. Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63, 747–760 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kanitscheider, I., Coen-Cagli, R., Kohn, A. & Pouget, A. Measuring Fisher information accurately in correlated neural populations. PLoS Comput. Biol. 11, e1004218 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Barker, M. & Rayens, W. Partial least squares for discrimination. J. Chemometr. 17, 166–173 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Wold, H. in Multivariate Analysis (ed. Krishnajah, P. R.) 391–420 (Academic, 1966).

  • Kohn, A. & Smith, M. A. Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. J. Neurosci. 25, 3661–3673 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hotelling, H. in Breakthroughs in Statistics Vol. 2 (eds S. Kotz & N.L. Johnson) 162–190 (Springer, 1992).

  • Witten, D. M. & Tibshirani, R. J. Extensions of sparse canonical correlation analysis with applications to genomic data. Stat. Appl. Genet. Mol. Biol. 8, Article28 (2009).

    MathSciNet 
    PubMed 
    MATH 
    Article 
    CAS 

    Google Scholar
     

  • Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’networks. Nature 393, 440–442 (1998).

    ADS 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar
     

  • Honey, C. J., Kotter, R., Breakspear, M. & Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl Acad. Sci. USA 104, 10240–10245 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lu, J., Yu, X., Chen, G. & Cheng, D. Characterizing the synchronizability of small-world dynamical networks. IEEE Trans. Circ. Syst. I 51, 787–796 (2004).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     



  • Source link