• Lehn, J.-M. Supramolecular chemistry—Scope and perspectives. Molecules, supermolecules, and molecular devices (Nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988).

    Article 

    Google Scholar
     

  • Cram, D. J. The design of molecular hosts, guests, and their complexes (Nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 1009–1020 (1988).

    Article 

    Google Scholar
     

  • Philp, D. & Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. Engl. 35, 1154–1196 (1996).

    Article 

    Google Scholar
     

  • Persch, E., Dumele, O. & Diederich, F. Molecular recognition in chemical and biological systems. Angew. Chem. Int. Ed. 54, 3290–3327 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Das, K., Gabrielli, L. & Prins, L. J. Chemically fueled self‐assembly in biology and chemistry. Angew. Chem. Int. Ed. 60, 20120–20143 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Weißenfels, M., Gemen, J. & Klajn, R. Dissipative self-assembly: fueling with chemicals versus light. Chem 7, 23–37 (2021).

    Article 

    Google Scholar
     

  • Yin, Z. et al. Dissipative supramolecular polymerization powered by light. CCS Chem. 1, 335–342 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Wiester, M. J., Ulmann, P. A. & Mirkin, C. A. Enzyme mimics based upon supramolecular coordination chemistry. Angew. Chem. Int. Ed. 50, 114–137 (2010).

    Article 

    Google Scholar
     

  • Webber, M. J., Appel, E. A., Meijer, E. W. & Langer, R. Supramolecular biomaterials. Nat. Mater. 15, 13–26 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Amabilino, D. B., Smith, D. K. & Steed, J. W. Supramolecular materials. Chem. Soc. Rev. 46, 2404–2420 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Y. et al. What molecular assembly can learn from catalytic chemistry. Chem. Soc. Rev. 43, 399–411 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Turberfield, A. J. et al. DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, D. Y., Turberfield, A. J., Yurke, B. & Winfree, E. Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Song, T. & Liang, H. Synchronized assembly of gold nanoparticles driven by a dynamic DNA-fueled molecular machine. J. Am. Chem. Soc. 134, 10803–10806 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Li, H. et al. Proton-assisted self-assemblies of linear di-pyridyl polyaromatic molecules at solid/liquid interface. J. Phys. Chem. C 116, 21753–21761 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Studer, A. & Curran, D. P. The electron is a catalyst. Nat. Chem. 6, 765–773 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Francke, R. & Little, R. D. Electrons and holes as catalysts in organic electrosynthesis. ChemElectroChem 6, 4373–4382 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Trabolsi, A. et al. Radically enhanced molecular recognition. Nat. Chem. 2, 42–49 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Aubert, S., Bezagu, M., Spivey, A. C. & Arseniyadis, S. Spatial and temporal control of chemical processes. Nat. Rev. Chem. 3, 706–722 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Mattia, E. & Otto, S. Supramolecular systems chemistry. Nat. Nanotechnol. 10, 111–119 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Whitesides, G. M. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Harada, A., Kobayashi, R., Takashima, Y., Hashidzume, A. & Yamaguchi, H. Macroscopic self-assembly through molecular recognition. Nat. Chem. 3, 34–37 (2010).

    Article 

    Google Scholar
     

  • Santos, P. J., Gabrys, P. A., Zornberg, L. Z., Lee, M. S. & Macfarlane, R. J. Macroscopic materials assembled from nanoparticle superlattices. Nature 591, 586–591 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lehn, J. M. Toward self-organization and complex matter. Science 295, 2400–2403 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Vantomme, G. & Meijer, E. W. The construction of supramolecular systems. Science 363, 1396–1397 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Pezzato, C., Cheng, C., Stoddart, J. F. & Astumian, R. D. Mastering the non-equilibrium assembly and operation of molecular machines. Chem. Soc. Rev. 46, 5491–5507 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Luca, O. R., Gustafson, J. L., Maddox, S. M., Fenwick, A. Q. & Smith, D. C. Catalysis by electrons and holes: formal potential scales and preparative organic electrochemistry. Org. Chem. Front. 2, 823–848 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Whitesides, G. M. et al. Noncovalent synthesis: using physical-organic chemistry to make aggregates. Acc. Chem. Res. 28, 37–44 (1995).

    CAS 
    Article 

    Google Scholar
     

  • Reinhoudt, D. N. Synthesis beyond the molecule. Science 295, 2403–2407 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Frasconi, M. et al. Redox control of the binding modes of an organic receptor. J. Am. Chem. Soc. 137, 11057–11068 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Y. et al. Symbiotic control in mechanical bond formation. Angew. Chem. Int. Ed. 55, 12387–12392 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Cai, K. et al. Molecular Russian dolls. Nat. Commun. 9, 5275 (2018).

    ADS 
    Article 

    Google Scholar
     



  • Source link

    Invest In Films & Earn Yearly

    Invest in films & earn yearly

    initial deposit returned + 25% min on top

    + 50% return on royalties for life

    This will close in 20 seconds