• Andrews, S. C. In Advances in Microbial Physiology vol. 40 (ed. Poole, R. K.) 281–351 (Academic, 1998).

  • Touati, D. Iron and oxidative stress in bacteria. Arch. Biochem. Biophys. 373, 1–6 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Andrews, S. C., Robinson, A. K. & Rodríguez-Quiñones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215–237 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Andrews, S. C. The ferritin-like superfamily: evolution of the biological iron storeman from a rubrerythrin-like ancestor. Biochim. Biophys. Acta 1800, 691–705 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nichols, R. J., Cassidy-Amstutz, C., Chaijarasphong, T. & Savage, D. F. Encapsulins: molecular biology of the shell. Crit. Rev. Biochem. Mol. Biol. 52, 583–594 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Byrne, M. E. et al. Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes. Proc. Natl Acad. Sci. USA 107, 12263–12268 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Glasauer, S., Langley, S. & Beveridge, T. J. Intracellular iron minerals in a dissimilatory iron-reducing bacterium. Science 295, 117–119 (2002).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Sakaguchi, T., Arakaki, A. & Matsunaga, T. Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int. J. Syst. Evol. Microbiol. 52, 215–221 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grant, C. R., Rahn-Lee, L., LeGault, K. N. & Komeili, A. Genome editing method for the anaerobic magnetotactic bacterium Desulfovibrio magneticus RS-1. Appl. Env. Microbiol. 84, e01724-18 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Rahn-Lee, L. et al. A genetic strategy for probing the functional diversity of magnetosome formation. PLoS Genet. 11, e1004811 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Argüello, J. M., Eren, E. & González-Guerrero, M. The structure and function of heavy metal transport P1B-ATPases. BioMetals 20, 233 (2007).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Smith, A. T., Smith, K. P. & Rosenzweig, A. C. Diversity of the metal-transporting P1B-type ATPases. J. Biol. Inorg. Chem. 19, 947–960 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chan, H. et al. The P-type ATPase superfamily. J. Mol. Microbiol. Biotechnol. 19, 5–104 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Padilla-Benavides, T., Long, J. E., Raimunda, D., Sassetti, C. M. & Argüello, J. M. A novel P1B-type Mn2+-transporting ATPase is required for secreted protein metallation in mycobacteria. J. Biol. Chem. 288, 11334–11347 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Botella, H. et al. Mycobacterial P1-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10, 248–259 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Russ, W. P. & Engelman, D. M. The GxxxG motif: a framework for transmembrane helix–helix association. J. Mol. Biol. 296, 911–919 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Unterreitmeier, S. et al. Phenylalanine promotes interaction of transmembrane domains via GxxxG motifs. J. Mol. Biol. 374, 705–718 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jarsch, I. K., Daste, F. & Gallop, J. L. Membrane curvature in cell biology: an integration of molecular mechanisms. J. Cell Biol. 214, 375–387 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Glasauer, S. et al. Mixed-valence cytoplasmic iron granules are linked to anaerobic respiration. Appl. Environ. Microbiol. 73, 993–996 (2007).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • VerBerkmoes, N. C. et al. Determination and comparison of the baseline proteomes of the versatile microbe Rhodopseudomonas palustris under its major metabolic states. J. Proteome Res. 5, 287–298 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rey, F. E. & Harwood, C. S. FixK, a global regulator of microaerobic growth, controls photosynthesis in Rhodopseudomonas palustris. Mol. Microbiol. 75, 1007–1020 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bose, A. & Newman, D. K. Regulation of the phototrophic iron oxidation (pio) genes in Rhodopseudomonas palustris TIE-1 is mediated by the global regulator, FixK. Mol. Microbiol. 79, 63–75 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Amor, M. et al. Magnetotactic bacteria accumulate a large pool of iron distinct from their magnetite crystals. Appl. Environ. Microbiol. 86, e01278-20 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abdul-Tehrani, H. et al. Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient. J. Bacteriol. 181, 1415–1428 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rolfe, M. D. et al. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J. Bacteriol. 194, 686–701 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bender, K. S. et al. Analysis of a ferric uptake regulator (Fur) mutant of Desulfovibrio vulgaris Hildenborough. Appl. Environ. Microbiol. 73, 5389–5400 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Uebe, R. et al. Deletion of a fur-like gene affects iron homeostasis and magnetosome formation in Magnetospirillum gryphiswaldense. J. Bacteriol. 192, 4192–4204 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, Q. et al. Physiological characteristics of Magnetospirillum gryphiswaldense MSR-1 that control cell growth under high-iron and low-oxygen conditions. Sci. Rep. 7, 2800 (2017).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pereira, P. M. et al. Transcriptional response of Desulfovibrio vulgaris Hildenborough to oxidative stress mimicking environmental conditions. Arch. Microbiol. 189, 451–461 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou, A. et al. Hydrogen peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough. Environ. Microbiol. 12, 2645–2657 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Caffrey, S. M. & Voordouw, G. Effect of sulfide on growth physiology and gene expression of Desulfovibrio vulgaris Hildenborough. Antonie Van Leeuwenhoek 97, 11–20 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ho, T. D. & Ellermeier, C. D. Ferric uptake regulator Fur control of putative iron acquisition systems in Clostridium difficile. J. Bacteriol. 197, 2930–2940 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiao, Y. & Newman, D. K. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 189, 1765–1773 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim, M.-K. & Harwood, C. S. Regulation of benzoate-CoA ligase in Rhodopseudomonas palustris. FEMS Microbiol. Lett. 83, 199–203 (1991).

    CAS 

    Google Scholar
     

  • Guan, G. et al. PfeT, a P1B4-type ATPase, effluxes ferrous iron and protects Bacillus subtilis against iron intoxication. Mol. Microbiol. 98, 787–803 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Komeili, A., Vali, H., Beveridge, T. J. & Newman, D. K. Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc. Natl Acad. Sci. USA 101, 3839–3844 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Murat, D., Quinlan, A., Vali, H. & Komeili, A. Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc. Natl Acad. Sci. USA 107, 5593–5598 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Rey, F. E., Oda, Y. & Harwood, C. S. Regulation of uptake hydrogenase and effects of hydrogen utilization on gene expression in Rhodopseudomonas palustris. J. Bacteriol. 188, 6143–6152 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Clark, I. C. et al. Synthetic and evolutionary construction of a chlorate-reducing Shewanella oneidensis MR-1. mBio 6, e00282-15 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Plumb, R. S. et al. UPLC/MSE: a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun. Mass Spectrom. 20, 1989–1994 (2006).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Geromanos, S. J., Hughes, C., Ciavarini, S., Vissers, J. P. C. & Langridge, J. I. Using ion purity scores for enhancing quantitative accuracy and precision in complex proteomics samples. Anal. Bioanal. Chem. 404, 1127–1139 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shliaha, P. V., Bond, N. J., Gatto, L. & Lilley, K. S. Effects of traveling wave ion mobility separation on data independent acquisition in proteomics studies. J. Proteome Res. 12, 2323–2339 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Levin, Y. & Bahn, S. LC–MS/MS in proteomics. Methods Mol. Biol 658, 217–231 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Neilson, K. A. et al. Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11, 535–553 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nahnsen, S., Bielow, C., Reinert, K. & Kohlbacher, O. Tools for label-free peptide quantification. Mol. Cell. Proteomics 12, 549–556 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Light, S. H. et al. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature 562, 140–144 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Engström, P. et al. Evasion of autophagy mediated by Rickettsia surface protein OmpB is critical for virulence. Nat. Microbiol. 4, 2538–2551 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Pinals, R. L. et al. Quantitative protein corona composition and dynamics on carbon nanotubes in biological environments. Angew. Chem. Int. Ed. 59, 23668–23677 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Engström, P., Burke, T. P., Tran, C. J., Iavarone, A. T. & Welch, M. D. Lysine methylation shields an intracellular pathogen from ubiquitylation and autophagy. Sci. Adv. 7, eabg2517 (2021).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Atolia, E. et al. Environmental and physiological factors affecting high-throughput measurements of bacterial growth. mBio 11, e01378-20 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, I.-M. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kumar, S., Nei, M., Dudley, J. & Tamura, K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 9, 299–306 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lefort, V., Longueville, J.-E. & Gascuel, O. SMS: smart model selection in PhyML. Mol. Biol. Evol. 34, 2422–2424 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Markiel, S. P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kanehisa, M. & Goto, S. Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morris, J. H. et al. clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinf. 12, 436 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Bernsel, A., Viklund, H., Hennerdal, A. & Elofsson, A. TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res. 37, W465–W468 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Crooks, G. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     



  • Source link