• Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge Univ. Press, 2010).

  • Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346 (2015).

    MathSciNet 
    Article 
    ADS 

    Google Scholar
     

  • Shor, P. W. Fault-tolerant quantum computation. In Proc. 37th Conference on Foundations of Computer Science 56–65 (IEEE, 1996).

  • Preskill, J. Reliable quantum computers. Proc. R. Soc. Lond. A 454, 385–410 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Aliferis, P., Gottesman, D. & Preskill, J. Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf. Comput. 6, 97–165 (2006).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Chao, R. & Reichardt, B. W. Quantum error correction with only two extra qubits. Phys. Rev. Lett. 121, 050502 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Chamberland, C. & Beverland, M. E. Flag fault-tolerant error correction with arbitrary distance codes. Quantum 2, 53 (2018).

    Article 

    Google Scholar
     

  • Chamberland, C. & Cross, A. W. Fault-tolerant magic state preparation with flag qubits. Quantum 3, 143 (2019).

    Article 

    Google Scholar
     

  • Chao, R. & Reichardt, B. W. Flag fault-tolerant error correction for any stabilizer code. PRX Quantum 1, 010302 (2020).

    Article 

    Google Scholar
     

  • Reichardt, B. W. Fault-tolerant quantum error correction for Steane’s seven-qubit color code with few or no extra qubits. Quantum Sci. Technol. 6, 015007 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Bombin, H. & Martin-Delgado, M. A. Topological quantum distillation. Phys. Rev. Lett. 97, 180501 (2006).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Steane, A. Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2577 (1996).

    MathSciNet 
    Article 
    ADS 

    Google Scholar
     

  • Goto, H. Minimizing resource overheads for fault-tolerant preparation of encoded states of the Steane code. Sci. Rep. 6, 19578 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

    MathSciNet 
    Article 
    ADS 

    Google Scholar
     

  • Ryan-Anderson, C. et al. Realization of real-time fault-tolerant quantum error correction. Phys. Rev. X 11, 041058 (2021).

    CAS 

    Google Scholar
     

  • Abobeih, M. H. et al. Fault-tolerant operation of a logical qubit in a diamond quantum processor. Preprint at https://arxiv.org/abs/2108.01646 (2021).

  • Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997).

    MathSciNet 
    Article 

    Google Scholar
     

  • Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    MathSciNet 
    Article 

    Google Scholar
     

  • Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant error rate. SIAM J. Comput. 38, 1207–1282 (2008).

    MathSciNet 
    Article 

    Google Scholar
     

  • Eastin, B. & Knill, E. Restrictions on transversal encoded quantum gate sets. Phys. Rev. Lett. 102, 110502 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Paetznick, A. & Reichardt, B. W. Universal fault-tolerant quantum computation with only transversal gates and error correction. Phys. Rev. Lett. 111, 090505 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Beverland, M. E., Kubica, A. & Svore, K. M. Cost of universality: a comparative study of the overhead of state distillation and code switching with color codes. PRX Quantum 2, 020341 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Nigg, D. et al. Quantum computations on a topologically encoded qubit. Science 345, 302–305 (2014).

    MathSciNet 
    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Harper, R. & Flammia, S. T. Fault-tolerant logical gates in the IBM quantum experience. Phys. Rev. Lett. 122, 080504 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Erhard, A. et al. Entangling logical qubits with lattice surgery. Nature 589, 220–224 (2021).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Satzinger, K. J. et al. Realizing topologically ordered states on a quantum processor. Science 374, 1237–1241 (2021).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Andersen, C. K. et al. Repeated quantum error detection in a surface code. Nat. Phys. 16, 875–880 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Marques, J. F. et al. Logical-qubit operations in an error-detecting surface code. Nat. Phys. 18, 80–86 (2021).

    Article 

    Google Scholar
     

  • Chen, Z. et al. Exponential suppression of bit or phase errors with cyclic error correction. Nature 595, 383–387 (2021).

    Article 

    Google Scholar
     

  • Gottesman, D. Quantum fault tolerance in small experiments. Preprint at https://arxiv.org/abs/1610.03507 (2016).

  • Takita, M., Cross, A. W., Córcoles, A. D., Chow, J. M. & Gambetta, J. M. Experimental demonstration of fault-tolerant state preparation with superconducting qubits. Phys. Rev. Lett. 119, 180501 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Vuillot, C. Is error detection helpful on IBM 5Q chips? Quantum Inf. Comput. 18, 949–964 (2018).

    MathSciNet 

    Google Scholar
     

  • Linke, N. M. et al. Fault-tolerant quantum error detection. Sci. Adv. 3, e1701074 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Egan, L. et al. Fault-tolerant control of an error-corrected qubit. Nature 598, 281–286 (2021).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Hilder, J. et al. Fault-tolerant parity readout on a shuttling-based trapped-ion quantum computer. Phys. Rev. X 12, 011032 (2022).

    CAS 

    Google Scholar
     

  • Pogorelov, I. et al. Compact ion-trap quantum computing demonstrator. PRX Quantum 2, 020343 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Sørensen, A. & Mølmer, K. Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 022311 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Nebendahl, V., Häffner, H. & Roos, C. F. Optimal control of entangling operations for trapped-ion quantum computing. Phys. Rev. A 79, 012312 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Bermudez, A., Xu, X., Gutiérrez, M., Benjamin, S. C. & Müller, M. Fault-tolerant protection of near-term trapped-ion topological qubits under realistic noise sources. Phys. Rev. A 100, 062307 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Riesebos, L., Fu, X., Varsamopoulos, S., Almudever, C. G. & Bertels, K. Pauli frames for quantum computer architectures. In DAC ’17: Proc. 54th Annual Design Automation Conference 2017 1–6 (Association for Computing Machinery, 2017).

  • Knill, E. Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Parrado-Rodríguez, P., Ryan-Anderson, C., Bermudez, A. & Müller, M. Crosstalk suppression for fault-tolerant quantum error correction with trapped ions. Quantum 5, 487 (2021).

    Article 

    Google Scholar
     

  • Maslov, D. Basic circuit compilation techniques for an ion-trap quantum machine. New J. Phys. 19, 023035 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ringbauer, M. et al. A universal qudit quantum processor with trapped ions. Preprint at https://arxiv.org/abs/2109.06903 (2021)

  • Ryan-Anderson, C. Quantum Algorithms, Architecture, and Error Correction. PhD thesis, The Univ. New Mexico (2018).

  • Hradil, Z., Řeháček, J., Fiurášek, J. & Ježek, M. in Quantum State Estimation 59–112 (Springer, 2004).



  • Source link