• Sancar, A. Mechanisms of DNA repair by photolyase and excision nuclease (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 55, 8502–8527 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Adebali, O., Chiou, Y. Y., Hu, J. C., Sancar, A. & Selby, C. P. Genome-wide transcription-coupled repair in Escherichia coli is mediated by the Mfd translocase. Proc. Natl Acad. Sci. USA 114, E2116–E2125 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adebali, O., Sancar, A. & Selby, C. P. Mfd translocase is necessary and sufficient for transcription-coupled repair in Escherichia coli. J. Biol. Chem. 292, 18386–18391 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J. H. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15, 465–481 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Kisker, C., Kuper, J. & Van Houten, B. Prokaryotic nucleotide excision repair. Cold Spring Harb. Perspect. Biol. 5, a012591 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuper, J. & Kisker, C. Damage recognition in nucleotide excision DNA repair. Curr. Opin. Struct. Biol. 22, 88–93 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 9, 958–970 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Pani, B. & Nudler, E. Mechanistic insights into transcription coupled DNA repair. DNA Repair 56, 42–50 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spivak, G. Transcription-coupled repair: an update. Arch. Toxicol. 90, 2583–2594 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selby, C. P. & Sancar, A. Molecular mechanism of transcription-repair coupling. Science 260, 53–58 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen, S. E. et al. Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli. Proc. Natl Acad. Sci. USA 107, 15517–15522 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamarthapu, V. et al. ppGpp couples transcription to DNA repair in E. coli. Science 352, 993–996 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ragheb, M. N. et al. Inhibiting the evolution of antibiotic resistance. Mol. Cell 73, 157–165 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schalow, B. J., Courcelle, C. T. & Courcelle, J. Mfd is required for rapid recovery of transcription following UV-induced DNA damage but not oxidative DNA damage in Escherichia coli. J. Bacteriol. 194, 2637–2645 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Witkin, E. M. Radiation-induced mutations and their repair. Science 152, 1345–1353 (1966).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamarthapu, V. & Nudler, E. Rethinking transcription coupled DNA repair. Curr. Opin. Microbiol. 24, 15–20 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mullenders, L. DNA damage mediated transcription arrest: step back to go forward. DNA Repair 36, 28–35 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Epshtein, V. et al. UvrD facilitates DNA repair by pulling RNA polymerase backwards. Nature 505, 372–377 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasouly, A., Pani, B. & Nudler, E. A magic spot in genome maintenance. Trends Genet. 33, 58–67 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Lin, C. G., Kovalsky, O. & Grossman, L. Transcription coupled nucleotide excision repair by isolated Escherichia coli membrane-associated nucleoids. Nucleic Acids Res. 26, 1466–1472 (1998).

    CAS 

    Google Scholar
     

  • Manelyte, L., Kim, Y. I., Smith, A. J., Smith, R. M. & Savery, N. J. Regulation and rate enhancement during transcription-coupled DNA repair. Mol. Cell 40, 714–724 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. Y. et al. Structural basis of transcription-translation coupling. Science 369, 1359–1365 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, H. F. et al. Rotations of the 2B sub-domain of E. coli UvrD helicase/translocase coupled to nucleotide and DNA binding. J. Mol. Biol. 411, 633–648 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. Y. & Yang, W. UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke. Cell 127, 1349–1360 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pakotiprapha, D. et al. Crystal structure of Bacillus stearothermophilus UvrA provides insight into ATP-modulated dimerization, UvrB interaction, and DNA binding. Mol. Cell 29, 122–133 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Pakotiprapha, D., Liu, Y., Verdine, G. L. & Jeruzalmi, D. A structural model for the damage-sensing complex in bacterial nucleotide excision repair. J. Biol. Chem. 284, 12837–12844 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pakotiprapha, D., Samuels, M., Shen, K. N., Hu, J. H. & Jeruzalmi, D. Structure and mechanism of the UvrA–UvrB DNA damage sensor. Nat. Struct. Mol. Biol. 19, 291–U247 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Jaciuk, M. et al. A combined structural and biochemical approach reveals translocation and stalling of UvrB on the DNA lesion as a mechanism of damage verification in bacterial nucleotide excision repair. DNA Repair 85, 102746 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, B., Ordabayev, Y., Sokoloski, J. E., Weiland, E. & Lohman, T. M. Large domain movements upon UvrD dimerization and helicase activation. Proc. Natl Acad. Sci. USA 114, 12178–12183 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duchi, D., Mazumder, A., Malinen, A. M., Ebright, R. H. & Kapanidis, A. N. The RNA polymerase clamp interconverts dynamically among three states and is stabilized in a partly closed state by ppGpp. Nucleic Acids Res. 46, 7284–7295 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo, Y. H., Wang, Y. M. & Steitz, T. A. The mechanism of E. coli RNA polymerase regulation by ppGpp is suggested by the structure of their complex. Mol. Cell 50, 430–436 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawale, A. A. & Burmann, B. M. UvrD helicase–RNA polymerase interactions are governed by UvrD’s carboxy-terminal Tudor domain. Commun. Biol. 3, 607 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanders, K. et al. The structure and function of an RNA polymerase interaction domain in the PcrA/UvrD helicase. Nucleic Acids Res. 45, 3875–3887 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urrutia-Irazabal, I., Ault, J. R., Sobott, F., Savery, N. J. & Dillingham, M. S. Analysis of the PcrA–RNA polymerase complex reveals a helicase interaction motif and a role for PcrA/UvrD helicase in the suppression of R-loops. eLife 10, e68829 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manelyte, L. et al. The unstructured C-terminal extension of UvrD interacts with UvrB, but is dispensable for nucleotide excision repair. DNA Repair 8, 1300–1310 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez, B., Bharati, B. K., Epshtein, V. & Nudler, E. Pervasive transcription-coupled DNA repair in E. coli. Nat. Commun., https://doi.org/10.1038/s41467-022-28871-y (2022).

  • Courcelle, J., Khodursky, A., Peter, B., Brown, P. O. & Hanawalt, P. C. Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158, 41–64 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomassen, G. O. et al. Tiling array analysis of UV treated Escherichia coli predicts novel differentially expressed small peptides. PLoS ONE 5, e15356 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Lin, L. L. & Little, J. W. Autodigestion and RecA-dependent cleavage of Ind mutant LexA proteins. J. Mol. Biol. 210, 439–452 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Richardson, J. P. Preventing the synthesis of unused transcripts by Rho factor. Cell 64, 1047–1049 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Jain, S., Gupta, R. & Sen, R. Rho-dependent transcription termination in bacteria recycles RNA polymerases stalled at DNA lesions. Nat. Commun. 10, 1207 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bryant, J. A., Sellars, L. E., Busby, S. J. W. & Lee, D. J. Chromosome position effects on gene expression in Escherichia coli K-12. Nucleic Acids Res. 42, 11383–11392 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perdiz, D. et al. Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated mammalian cells. Possible role of Dewar photoproducts in solar mutagenesis. J. Biol. Chem. 275, 26732–26742 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Ikenaga, M., Ichikawa-Ryo, H. & Kondo, S. The major cause of inactivation and mutation by 4-nitroquinoline 1-oixde in Escherichia coli: excisable 4NQO-purine adducts. J. Mol. Biol. 92, 341–356 (1975).

    CAS 
    PubMed 

    Google Scholar
     

  • Zdraveski, Z. Z., Mello, J. A., Marinus, M. G. & Essigmann, J. M. Multiple pathways of recombination define cellular responses to cisplatin. Chem. Biol. 7, 39–50 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Wade, J. T. & Grainger, D. C. Pervasive transcription: illuminating the dark matter of bacterial transcriptomes. Nat. Rev. Microbiol. 12, 647–653 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Kunala, S. & Brash, D. E. Intragenic domains of strand-specific repair in Escherichia coli. J. Mol. Biol. 246, 264–272 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Gaul, L. & Svejstrup, J. Q. Transcription-coupled repair and the transcriptional response to UV-irradiation. DNA Repair 107, 103208 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Duan, M., Selvam, K., Wyrick, J. J. & Mao, P. Genome-wide role of Rad26 in promoting transcription-coupled nucleotide excision repair in yeast chromatin. Proc. Natl Acad. Sci. USA 117, 18608–18616 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, J., Xu, J., Chong, J. & Wang, D. Molecular basis of transcriptional pausing, stalling, and transcription-coupled repair initiation. Biochim. Biophys. Acta Gene Regul. Mech. 1864, 194659 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Velez-Cruz, R. & Egly, J. M. Cockayne syndrome group B (CSB) protein: at the crossroads of transcriptional networks. Mech. Ageing Dev. 134, 234–242 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh-Roy, S., Das, D., Chowdhury, D., Smerdon, M. J. & Chaudhuri, R. N. Rad26, the transcription-coupled repair factor in yeast, is required for removal of stalled RNA polymerase-II following UV irradiation. PLoS ONE 8, e72090 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Li, W. T. & Li, S. S. Facilitators and repressors of transcription-coupled DNA repair in Saccharomyces cerevisiae. Photochem. Photobiol. 93, 259–267 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Mayne, L. V. & Lehmann, A. R. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne’s syndrome and xeroderma pigmentosum. Cancer Res. 42, 1473–1478 (1982).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, D. D. et al. CRISPR/Cas9-assisted gRNA-free one-step genome editing with no sequence limitations and improved targeting efficiency. Sci Rep. 7, 16624 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kitagawa, M. et al. Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res. 12, 291–299 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carter, J. D. & LaBean, T. H. Coupling strategies for the synthesis of peptide-oligonucleotide conjugates for patterned synthetic biomineralization. J. Nucleic Acids 2011, 926595 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghosh, S. S., Kao, P. M., Mccue, A. W. & Chappelle, H. L. Use of maleimide-thiol coupling chemistry for efficient syntheses of oligonucleotide-enzyme conjugate hybridization probes. Bioconjugate Chem. 1, 71–76 (1990).

    CAS 

    Google Scholar
     

  • Hermanson, G. T. Bioconjugate Techniques 3rd edn (Academic, 2013).

  • Grabarek, Z. & Gergely, J. Zero-length crosslinking procedure with the use of active esters. Anal. Biochem. 185, 131–135 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Staros, J. V., Wright, R. W. & Swingle, D. M. Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal. Biochem. 156, 220–222 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • Lu, L. et al. Identification of MS-cleavable and noncleavable chemically cross-linked peptides with MetaMorpheus. J. Proteome Res. 17, 2370–2376 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wisniewski, J. R. Label-free and standard-free absolute quantitative proteomics using the “total protein” and “proteomic ruler” approaches. Methods Enzymol. 585, 49–60 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Meyer, A. et al. Systematic analysis of protein-detergent complexes applying dynamic light scattering to optimize solutions for crystallization trials. Acta Crystallogr. F 71, 75–81 (2015).

    CAS 

    Google Scholar
     

  • Chi, H. et al. Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine. Nat. Biotechnol. 36, 1059–1061 (2018).

    CAS 

    Google Scholar
     

  • Chen, Z. L. et al. A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides. Nat. Commun. 10, 3404 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spivak, G. & Hanawalt, P. C. Determination of damage and repair in specific DNA Sequences. Methods 7, 147–161 (1995).

    CAS 

    Google Scholar
     

  • Iyer, S., Park, B. R. & Kim, M. Absolute quantitative measurement of transcriptional kinetic parameters in vivo. Nucleic Acids Res. 44, e142 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dannenmann, B. et al. Simultaneous quantification of DNA damage and mitochondrial copy number by long-run DNA-damage quantification (LORD-Q). Oncotarget 8, 112417–112425 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lehle, S. et al. LORD-Q: a long-run real-time PCR-based DNA-damage quantification method for nuclear and mitochondrial genome analysis. Nucleic Acids Res. 42, e41 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rothfuss, O., Gasser, T. & Patenge, N. Analysis of differential DNA damage in the mitochondrial genome employing a semi-long run real-time PCR approach. Nucleic Acids Res. 38, e24 (2010).

    PubMed 

    Google Scholar
     

  • Zhu, S. & Coffman, J. A. Simple and fast quantification of DNA damage by real-time PCR, and its application to nuclear and mitochondrial DNA from multiple tissues of aging zebrafish. BMC Res. Notes 10, 269 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crowley, D. J. & Hanawalt, P. C. Induction of the SOS response increases the efficiency of global nucleotide excision repair of cyclobutane pyrimidine dimers, but not 6-4 photoproducts, in UV-irradiated Escherichia coli. J. Bacteriol. 180, 3345–3352 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koehler, D. R., Courcelle, J. & Hanawalt, P. C. Kinetics of pyrimidine(6-4)pyrimidone photoproduct repair in Escherichia coli. J. Bacteriol. 178, 1347–1350 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kai-Feng, H., Sidorova, J. M., Nghiem, P. & Kawasumi, M. The 6-4 photoproduct is the trigger of UV-induced replication blockage and ATR activation. Proc. Natl Acad. Sci. USA 117, 12806–12816 (2020).


    Google Scholar
     

  • Davis, S. E. et al. Mapping E. coli RNA polymerase and associated transcription factors and identifying promoters genome-wide. Methods Enzymol. 498, 449–471 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, C., Kim, J., Shin, S. G. & Hwang, S. Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol. 123, 273–280 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Epshtein, V. & Nudler, E. Cooperation between RNA polymerase molecules in transcription elongation. Science 300, 801–805 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J. & Zhang, Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 43, W174–W181 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossi, F. et al. The biological and structural characterization of Mycobacterium tuberculosis UvrA provides novel insights into its mechanism of action. Nucleic Acids Res. 39, 7316–7328 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogel, U. & Jensen, K. F. NusA is required for ribosomal antitermination and for modulation of the transcription elongation rate of both antiterminated RNA and mRNA. J. Biol. Chem. 272, 12265–12271 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Belogurov, G. A. & Artsimovitch, I. The mechanisms of substrate selection, catalysis, and translocation by the elongating RNA polymerase. J. Mol. Biol. 431, 3975–4006 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canutescu, A. A., Shelenkov, A. A. & Dunbrack, R. L. A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci. 12, 2001–2014 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krieger, E. & Vriend, G. New ways to boost molecular dynamics simulations. J. Comput. Chem. 36, 996–1007 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orban-Nemeth, Z. et al. Structural prediction of protein models using distance restraints derived from cross-linking mass spectrometry data. Nat. Protoc. 13, 1724–1724 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Duhovny, D., Nussinov, R. & Wolfson, H. J. In Algorithms in Bioinformatics. WABI 2002. Lecture Notes in Computer Science vol. 2452 (eds Guigó, R. & Gusfield, D.) 185–200 (Springer, 2002).

  • Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H. J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33, W363–W367 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bullock, J. M. A., Schwab, J., Thalassinos, K. & Topf, M. The importance of non-accessible crosslinks and solvent accessible surface distance in modeling proteins with restraints from crosslinking mass spectrometry. Mol. Cell. Proteomics 15, 2491–2500 (2016).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Martin, A. C. R. & Porter, C. T. ProFit V3.1 http://www.bioinf.org.uk/software/profit/ (2009).

  • Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Severinov, K., Mooney, R., Darst, S. A. & Landick, R. Tethering of the large subunits of Escherichia coli RNA polymerase. J. Biol. Chem. 272, 24137–24140 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Structural basis of transcription initiation. Science 338, 1076–1080 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Opalka, N. et al. Complete structural model of Escherichia coli RNA polymerase from a hybrid approach. PLoS Biol. 8, e1000483 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skubak, P. et al. A new MR-SAD algorithm for the automatic building of protein models from low-resolution X-ray data and a poor starting model. IUCrJ 5, 166–171 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D 62, 1002–1011 (2006).

    PubMed 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67, 355–367 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakagawa, N. et al. Crystal structure of Thermus thermophilus HB8 UvrB protein, a key enzyme of nucleotide excision repair. J. Biochem. 126, 986–990 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, S. J., Sung, R. J. & Verdine, G. L. Mechanism of DNA lesion homing and recognition by the Uvr nucleotide excision repair system. Research 2019, 5641746 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orren, D. K. & Sancar, A. The (A)BC excinuclease of Escherichia coli has only the Uvrb and Uvrc subunits in the incision complex. Proc. Natl Acad. Sci. USA 86, 5237–5241 (1989).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou, Y. & Van Houten, B. Strand opening by the UvrA(2)B complex allows dynamic recognition of DNA damage. EMBO J. 18, 4889–4901 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verhoeven, E. E. A., Wyman, C., Moolenaar, G. F. & Goosen, N. The presence of two UvrB subunits in the UvrAB complex ensures damage detection in both DNA strands. EMBO J. 21, 4196–4205 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brugger, C. et al. Molecular determinants for dsDNA translocation by the transcription-repair coupling and evolvability factor Mfd. Nat. Commun. 11, 3740 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deaconescu, A. M., Sevostyanova, A., Artsimovitch, I. & Grigorieff, N. Nucleotide excision repair (NER) machinery recruitment by the transcription-repair coupling factor involves unmasking of a conserved intramolecular interface. Proc. Natl Acad. Sci. USA 109, 3353–3358 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link