• Plastics—The Facts 2019 (PlasticsEurope, 2019).

  • Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 2–24 (2020). A Review on the different recycling technologies suitable for the reuse or the valorization of plastic wastes in a circular economy perspective.


    Google Scholar
     

  • Lazarevic, D., Aoustin, E., Buclet, N. & Brandt, N. Plastic waste management in the context of a European recycling society: comparing results and uncertainties in a life cycle perspective. Resour. Conserv. Recycl. 55, 246–259 (2010).


    Google Scholar
     

  • Antelava, A. et al. Plastic solid waste (PSW) in the context of life cycle assessment (LCA) and sustainable management. Environ. Manage. 64, 230–244 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • National overview: facts and figures on materials, wastes and recycling. US EPA https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials (2017).

  • What a Waste?: A Global Review of Solid Waste Management (World Bank, 2012); https://documents.worldbank.org/en/publication/documents-reports/documentdetail/302341468126264791/What-a-waste-a-global-review-of-solid-waste-management.

  • Ügdüler, S., Van Geem, K. M., Roosen, M., Delbeke, E. I. P. & De Meester, S. Challenges and opportunities of solvent-based additive extraction methods for plastic recycling. Waste Manage. 104, 148–182 (2020).


    Google Scholar
     

  • Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellis, L. D. et al. Tandem heterogeneous catalysis for polyethylene depolymerization via an olefin-intermediate process. ACS Sustain. Chem. Eng. 9, 623–628 (2021).

    CAS 

    Google Scholar
     

  • Ellen Macarthur Foundation. The new plastic economy – catalysing action. https://ellenmacarthurfoundation.org/the-new-plastics-economy-catalysing-action (2018).

  • Hong, M. & Y.-X. Chen, E. Chemically recyclable polymers: a circular economy approach to sustainability. Green Chem. 19, 3692–3706 (2017).

    CAS 

    Google Scholar
     

  • Schneiderman, D. K. & Hillmyer, M. A. 50th anniversary perspective: there is a great future in sustainable polymers. Macromolecules 50, 3733–3749 (2017). A Perspective summarizing the most important topics for moving to more sustainable polymers: renewable monomers and degradable polymers, the development of chemical recycling strategies, new classes of reprocessable thermosets and the design of advanced catalysts.

    ADS 
    CAS 

    Google Scholar
     

  • Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).


    Google Scholar
     

  • Jehanno, C., Pérez-Madrigal, M. M., Demarteau, J., Sardon, H. & Dove, A. P. Organocatalysis for depolymerisation. Polym. Chem. 10, 172–186 (2018).


    Google Scholar
     

  • Coates, G. W. & Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020). A Review and point of view on the ideal design for chemical recycling to monomer considering thermodynamic and processing issues.

    ADS 
    CAS 

    Google Scholar
     

  • Ellis, L. D. et al. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 4, 539–556 (2021).

    CAS 

    Google Scholar
     

  • Pauli, G. & Hartkemeyer, J. F. UpCycling (Chronik Verlag im Bertelsmann LEXIKON Verlag, 1999).

  • Eriksen, M. K., Damgaard, A., Boldrin, A. & Astrup, T. F. Quality assessment and circularity potential of recovery systems for household plastic waste. J. Ind. Ecol. 23, 156–168 (2019).


    Google Scholar
     

  • Vadenbo, C., Hellweg, S. & Astrup, T. F. Let’s be clear(er) about substitution: a reporting framework to account for product displacement in life cycle assessment. J. Ind. Ecol. 21, 1078–1089 (2017).


    Google Scholar
     

  • Geyer, B., Röhner, S., Lorenz, G. & Kandelbauer, A. Designing oligomeric ethylene terephtalate building blocks by chemical recycling of polyethylene terephtalate. J. Appl. Polym. Sci. 131, 39786–39798 (2014).


    Google Scholar
     

  • Kathalewar, M. et al. Chemical recycling of PET using neopentyl glycol: reaction kinetics and preparation of polyurethane coatings. Prog. Org. Coat. 76, 147–156 (2013).

    CAS 

    Google Scholar
     

  • Roy, P. K., Mathur, R., Kumar, D. & Rajagopal, C. Tertiary recycling of poly(ethylene terephthalate) wastes for production of polyurethane–polyisocyanurate foams. J. Environ. Chem. Eng. 1, 1062–1069 (2013).

    CAS 

    Google Scholar
     

  • Rorrer, N. A. et al. Combining reclaimed PET with bio-based monomers enables plastics upcycling. Joule 3, 1006–1027 (2019). Recyclates from PET and bio-derived monomers recombined into fibreglass reinforced plastic resulting into an upcycled material with a lower production of energy and greenhouse gas emissions.

    CAS 

    Google Scholar
     

  • Kim, J. G. Chemical recycling of poly(bisphenol A carbonate). Polym. Chem. 11, 1830–4849 (2020).


    Google Scholar
     

  • Jones, G. O., Yuen, A., Wojtecki, R. J., Hedrick, J. L. & García, J. M. Computational and experimental investigations of one-step conversion of poly(carbonate)s into value-added poly(aryl ether sulfone)s. Proc. Natl Acad. Sci. USA 113, 7722–7726 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pang, C. et al. Sustainable polycarbonates from a citric acid-based rigid diol and recycled BPA-PC: from synthesis to properties. ACS Sustain. Chem. Eng. 6, 17059–17067 (2018). The synthesis of innovative amorphous polycarbonates based on a bicyclic diol from naturally occurring citric acid derivatives and recyclates of BPA-PC wastes through melt polycondensation.

    CAS 

    Google Scholar
     

  • Saito, K. et al. From plastic waste to polymer electrolytes for batteries through chemical upcycling of polycarbonate. J. Mater. Chem. A 8, 13921–13926 (2020).

    CAS 

    Google Scholar
     

  • Wu, C.-H., Chen, L.-Y., Jeng, R.-J. & Dai, S. A. 100% atom-economy efficiency of recycling polycarbonate into versatile intermediates. ACS Sustain. Chem. Eng. 6, 8964–8975 (2018).

    CAS 

    Google Scholar
     

  • Sohn, Y. J. et al. Recent advances in sustainable plastic upcycling and biopolymers. Biotechnol. J. 15, 1900489 (2020).

    CAS 

    Google Scholar
     

  • Kenny, S. T. et al. Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate. Appl. Microbiol. Biotechnol. 95, 623–633 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kenny, S. T. et al. Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate). Environ. Sci. Technol. 42, 7696–7701 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tiso, T. et al. Towards bio-upcycling of polyethylene terephthalate. Metab. Eng. 66, 167–178 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ward, P. G., Goff, M., Donner, M., Kaminsky, W. & O’Connor, K. E. A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ. Sci. Technol. 40, 2433–2437 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, R. et al. Possibilities and limitations of biotechnological plastic degradation and recycling. Nat. Catal. 3, 867–871 (2020).

    CAS 

    Google Scholar
     

  • Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williamson, J. B., Lewis, S. E., Johnson, R. R. III, Manning, I. M. & Leibfarth, F. A. C−H functionalization of commodity polymers. Angew. Chem. Int. Ed. 58, 8654–8668 (2019).

    CAS 

    Google Scholar
     

  • Kondo, Y. et al. Rhodium-catalyzed, regiospecific functionalization of polyolefins in the melt. J. Am. Chem. Soc. 124, 1164–1165 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bae, C. et al. Regiospecific side-chain functionalization of linear low-density polyethylene with polar groups. Angew. Chem. Int. Ed. 44, 6410–6413 (2005).

    CAS 

    Google Scholar
     

  • Bae, C. et al. Catalytic hydroxylation of polypropylenes. J. Am. Chem. Soc. 127, 767–776 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williamson, J. B., Czaplyski, W. L., Alexanian, E. J. & Leibfarth, F. A. Regioselective C−H xanthylation as a platform for polyolefin functionalization. Angew. Chem. Int. Ed. 57, 6261–6265 (2018).

    CAS 

    Google Scholar
     

  • Williamson, J. B. et al. Chemo- and regioselective functionalization of isotactic polypropylene: a mechanistic and structure–property study. J. Am. Chem. Soc. 141, 12815–12823 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • M. Plummer, C., Li, L. & Chen, Y. The post-modification of polyolefins with emerging synthetic methods. Polym. Chem. 11, 6862–6872 (2020).


    Google Scholar
     

  • Fakezas, T. J. et al. Diversification of aliphatic C–H bonds in small molecules and polyolefins through radical chain transfer. Science 375, 545–550 (2022).

  • Chen, L. et al. Selective, catalytic oxidations of C–H bonds in polyethylenes produce functional materials with enhanced adhesion. Chem 7, 137–145 (2021). Selective functionalization of polyethylene through ruthenium-catalysed oxidation of C–H bonds for the synthesis of processable and adhesive materials.

    CAS 

    Google Scholar
     

  • Röttger, M. et al. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 356, 62–65 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Easterling, C. P., Kubo, T., Orr, Z. M., Fanucci, G. E. & Sumerlin, B. S. Synthetic upcycling of polyacrylates through organocatalyzed post-polymerization modification. Chem. Sci. 8, 7705–7709 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis, S. E., Wilhelmy, B. E. & Leibfarth, F. A. Organocatalytic C–H fluoroalkylation of commodity polymers. Polym. Chem. https://doi.org/10.1039/C9PY01884K (2020).

  • Lewis, S. E., Wilhelmy, B. E. & Leibfarth, F. A. Upcycling aromatic polymers through C–H fluoroalkylation. Chem. Sci. 10, 6270–6277 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, P., Lochab, B., Kumar, D. & Roy, P. K. Sustainable bis-benzoxazines from cardanol and PET-derived terephthalamides. ACS Sustain. Chem. Eng. 4, 1085–1093 (2016).

    CAS 

    Google Scholar
     

  • Tan, J. P. K. et al. Upcycling poly(ethylene terephthalate) refuse to advanced therapeutics for the treatment of nosocomial and mycobacterial infections. Macromolecules 52, 7878–7885 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Fukushima, K. et al. Supramolecular high-aspect ratio assemblies with strong antifungal activity. Nat. Commun. 4, 2861 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fukushima, K. et al. Advanced chemical recycling of poly(ethylene terephthalate) through organocatalytic aminolysis. Polym. Chem. 4, 1610–1616 (2013).

    CAS 

    Google Scholar
     

  • Fukushima, K. et al. Broad-spectrum antimicrobial supramolecular assemblies with distinctive size and shape. ACS Nano 6, 9191–9199 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Demarteau, J., O’Harra, K. E., Bara, J. E. & Sardon, H. Valorization of plastic wastes for the synthesis of imidazolium-based self-supported elastomeric ionenes. ChemSusChem 13, 3122–3126 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kammakakam, I., O’Harra, K. E., Dennis, G. P., Jackson, E. M. & Bara, J. E. Self-healing imidazolium-based ionene-polyamide membranes: an experimental study on physical and gas transport properties. Polym. Int. 68, 1123–1129 (2019).

    CAS 

    Google Scholar
     

  • Iannone, F. et al. Ionic liquids/ZnO nanoparticles as recyclable catalyst for polycarbonate depolymerization. J. Mol. Catal. A 426, 107–116 (2017).

    CAS 

    Google Scholar
     

  • Do, T., Baral, E. R. & Kim, J. G. Chemical recycling of poly(bisphenol A carbonate): 1,5,7-triazabicyclo[4.4.0]-dec-5-ene catalyzed alcoholysis for highly efficient bisphenol A and organic carbonate recovery. Polymer 143, 106–114 (2018).

    CAS 

    Google Scholar
     

  • Jehanno, C. et al. Synthesis of functionalized cyclic carbonates through commodity polymer upcycling. ACS Macro Lett. 9, 443–447 (2020). Selective upcycling of BPA-PC wastes into functionalized six-member cyclic carbonates through an organocatalysed-mediated depolymerization.

    CAS 

    Google Scholar
     

  • Tempelaar, S., Mespouille, L., Coulembier, O., Dubois, P. & P. Dove, A. Synthesis and post-polymerisation modifications of aliphatic poly(carbonate)s prepared by ring-opening polymerisation. Chem. Soc. Rev. 42, 1312–1336 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sardon, H. et al. Synthesis of polyurethanes using organocatalysis: a perspective. Macromolecules 48, 3153–3165 (2015).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Westhues, S., Idel, J. & Klankermayer, J. Molecular catalyst systems as key enablers for tailored polyesters and polycarbonate recycling concepts. Sci. Adv. 4, eaat9669 (2018). Catalytic depolymerization of polyesters and polycarbonates through a ruthenium catalyst-mediated hydrogenolysis, paving the way to innovative and sustainable recycling strategies.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monsigny, L., Berthet, J.-C. & Cantat, T. Depolymerization of waste plastics to monomers and chemicals using a hydrosilylation strategy facilitated by Brookhart’s iridium(III) catalyst. ACS Sustain. Chem. Eng. 6, 10481–10488 (2018).

    CAS 

    Google Scholar
     

  • Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370, 437–441 (2020).

  • Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. T. et al. Biological valorization of poly(ethylene terephthalate) monomers for upcycling waste PET. ACS Sustain. Chem. Eng. 7, 19396–19406 (2019).

    CAS 

    Google Scholar
     

  • Additive Manufacturing Market Size: Industry Report, 2020–2025 https://www.knowledge-sourcing.com/report/additive-manufacturing-market (Knowledge Sourcing Intelligence LLP, 2021).

  • Bäckström, E., Odelius, K. & Hakkarainen, M. Trash to treasure: microwave-assisted conversion of polyethylene to functional chemicals. Ind. Eng. Chem. Res. 56, 14814–14821 (2017).


    Google Scholar
     

  • Bäckström, E., Odelius, K. & Hakkarainen, M. Designed from recycled: turning polyethylene waste to covalently attached polylactide plasticizers. ACS Sustain. Chem. Eng. 7, 11004–11013 (2019). Microwave-assisted oxidative degradation of LDPE waste into functional chemicals (glutaric, succinic and adipic acids) for the subsequent synthesis of PLA plasticizer.


    Google Scholar
     

  • Mouawia, A., Nourry, A., Gaumont, A.-C., Pilard, J.-F. & Dez, I. Controlled metathetic depolymerization of natural rubber in ionic liquids: from waste tires to telechelic polyisoprene oligomers. ACS Sustain. Chem. Eng. 5, 696–700 (2017).

    CAS 

    Google Scholar
     

  • Zhang, J., Yan, B., Wan, S. & Kong, Q. Converting polyethylene waste into large scale one-dimensional Fe3O4@C composites by a facile one-pot process. Ind. Eng. Chem. Res. 52, 5708–5712 (2013).

    CAS 

    Google Scholar
     

  • Gong, J. et al. Upcycling waste polypropylene into graphene flakes on organically modified montmorillonite. Ind. Eng. Chem. Res. 53, 4173–4181 (2014).

    CAS 

    Google Scholar
     

  • Yang, R.-X., Chuang, K.-H. & Wey, M.-Y. Effects of nickel species on Ni/Al2O3 catalysts in carbon nanotube and hydrogen production by waste plastic gasification: bench- and pilot-scale tests. Energy Fuels 29, 8178–8187 (2015).

    CAS 

    Google Scholar
     

  • Zhao, D., Wang, X., Miller, J. B. & Huber, G. W. The chemistry and kinetics of polyethylene pyrolysis: a process to produce fuels and chemicals. ChemSusChem 13, 1764–1774 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuo, C. & Levendis, Y. A. Upcycling waste plastics into carbon nanomaterials: a review. J. Appl. Polym. Sci. https://doi.org/10.1002/app.39931 (2014).

  • Gong, J., Chen, X. & Tang, T. Recent progress in controlled carbonization of (waste) polymers. Prog. Polym. Sci. 94, 1–32 (2019).

    CAS 

    Google Scholar
     

  • Gong, J. et al. Converting mixed plastics into mesoporous hollow carbon spheres with controllable diameter. Appl. Catal. B 152–153, 289–299 (2014).


    Google Scholar
     

  • Villagómez-Salas, S., Manikandan, P., Acuña Guzmán, S. F. & Pol, V. G. Amorphous carbon chips Li-ion battery anodes produced through polyethylene waste upcycling. ACS Omega 3, 17520–17527 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, P. J., Fontecha, H. D., Kim, K. & Pol, V. G. Toward high-performance lithium–sulfur batteries: upcycling of LDPE plastic into sulfonated carbon scaffold via microwave-promoted sulfonation. ACS Appl. Mater. Interfaces 10, 14827–14834 (2018). Preparation of highly porous sulfonated materials from microwave-promoted sulfonation of LDPE wastes.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohamed, H. H., Alsanea, A. A., Alomair, N. A., Akhtar, S. & Bahnemann, D. W. ZnO@ porous graphite nanocomposite from waste for superior photocatalytic activity. Environ. Sci. Pollut. Res. 26, 12288–12301 (2019).

    CAS 

    Google Scholar
     

  • Ko, S., Kwon, Y. J., Lee, J. U. & Jeon, Y.-P. Preparation of synthetic graphite from waste PET plastic. J. Ind. Eng. Chem. 83, 449–458 (2019).


    Google Scholar
     

  • Koning, C., Van Duin, M., Pagnoulle, C. & Jerome, R. Strategies for compatibilization of polymer blends. Prog. Polym. Sci. 23, 707–757 (1998).

    CAS 

    Google Scholar
     

  • Feldman, D. Polyblend compatibilization. J. Macromol. Sci. A 42, 587–605 (2005).


    Google Scholar
     

  • Nechifor, M., Tanasă, F., Teacă, C.-A. & Zănoagă, M. Compatibilization strategies toward new polymer materials from re-/up-cycled plastics. Int. J. Polym. Anal. Charact. 23, 740–757 (2018).

    CAS 

    Google Scholar
     

  • Santana, R. M. C. & Manrich, S. Studies on morphology and mechanical properties of PP/HIPS blends from postconsumer plastic waste. J. Appl. Polym. Sci. 87, 747–751 (2003).


    Google Scholar
     

  • Equiza, N., Yave, W., Quijada, R. & Yazdani‐Pedram, M. Use of SEBS/EPR and SBR/EPR as binary compatibilizers for PE/PP/PS/HIPS blends: a work oriented to the recycling of thermoplastic wastes. Macromol. Mater. Eng. 292, 1001–1011 (2007).

    CAS 

    Google Scholar
     

  • Pracella, M., Rolla, L., Chionna, D. & Galeski, A. Compatibilization and properties of poly(ethylene terephthalate)/polyethylene blends based on recycled materials. Macromol. Chem. Phys. 203, 1473–1485 (2002).

    CAS 

    Google Scholar
     

  • Pawlak, A., Morawiec, J., Pazzagli, F., Pracella, M. & Galeski, A. Recycling of postconsumer poly(ethylene terephthalate) and high-density polyethylene by compatibilized blending. J. Appl. Polym. Sci. 86, 1473–1485 (2002).

    CAS 

    Google Scholar
     

  • Ragaert, K., Delva, L. & Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manage. 69, 24–58 (2017).

    CAS 

    Google Scholar
     

  • Eagan, J. M. et al. Combining polyethylene and polypropylene: enhanced performance with PE/iPP multiblock polymers. Science 355, 814–816 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, J. et al. Compatibilization of isotactic polypropylene (iPP) and high-density polyethylene (HDPE) with iPP–PE multiblock copolymers. Macromolecules 51, 8585–8596 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Washiyama, J., Kramer, E. J. & Hui, C. Y. Fracture mechanisms of polymer interfaces reinforced with block copolymers: transition from chain pullout to crazing. Macromolecules 26, 2928–2934 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Galloway, J. A., Jeon, H. K., Bell, J. R. & Macosko, C. W. Block copolymer compatibilization of cocontinuous polymer blends. Polymer 46, 183–191 (2005).

    CAS 

    Google Scholar
     

  • Macosko, C. W., Jeon, H. K. & Hoye, T. R. Reactions at polymer–polymer interfaces for blend compatibilization. Prog. Polym. Sci. 30, 939–947 (2005).

    CAS 

    Google Scholar
     

  • Sundararaj, U. & Macosko, C. W. Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules 28, 2647–2657 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Saleem, M. & Baker, W. E. In situ reactive compatibilization in polymer blends: effects of functional group concentrations. J. Appl. Polym. Sci. 39, 655–678 (1990).

    CAS 

    Google Scholar
     

  • Hettema, R., Pasman, J. & Janssen, L. P. B. M. Reactive extrusion of recycled bottle waste material. Polym. Eng. Sci. 42, 665–680 (2002).

    CAS 

    Google Scholar
     

  • Hlavatá, D., Kruliš, Z., Horák, Z., Lednický, F. & Hromádková, J. The role of lubricants in reactive compatibilization of polyolefin blends. Macromol. Symp. 176, 93–106 (2001).


    Google Scholar
     

  • Ghose, A., Pizzol, M. & McLaren, S. J. Consequential LCA modelling of building refurbishment in New Zealand-—an evaluation of resource and waste management scenarios. J. Clean. Prod. 165, 119–133 (2017).


    Google Scholar
     

  • Buyle, M., Galle, W., Debacker, W. & Audenaert, A. Sustainability assessment of circular building alternatives: consequential LCA and LCC for internal wall assemblies as a case study in a Belgian context. J. Clean. Prod. 218, 141–156 (2019).


    Google Scholar
     

  • Prosman, E. J. & Sacchi, R. New environmental supplier selection criteria for circular supply chains: lessons from a consequential LCA study on waste recovery. J. Clean. Prod. 172, 2782–2792 (2018).


    Google Scholar
     

  • Civancik-Uslu, D. et al. Moving from linear to circular household plastic packaging in Belgium: prospective life cycle assessment of mechanical and thermochemical recycling. Resour. Conserv. Recycl. 171, 105633 (2021).


    Google Scholar
     

  • De Meester, S., Nachtergaele, P., Debaveye, S., Vos, P. & Dewulf, J. Using material flow analysis and life cycle assessment in decision support: a case study on WEEE valorization in Belgium. Resour. Conserv. Recycl. 142, 1–9 (2019).


    Google Scholar
     

  • Moraga, G. et al. Circular economy indicators: What do they measure? Resour. Conserv. Recycl. 146, 452–461 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Britt, P. et al. Report of the Basic Energy Sciences Roundtable on Chemical Upcycling of Polymers (2019).

  • Plastic upcycling. Nat. Catal. 2, 945–946 (2019).

  • Shi, C. et al. Design principles for intrinsically circular polymers with tunable properties. Chem. 7, 2896–2912 (2021)

  • Liu, X., Hong, M., Falivene, L., Cavallo, L. & Chen, E. Y.-X. Closed-loop polymer upcycling by installing property-enhancing comonomer sequences and recyclability. Macromolecules 52, 4570–4578 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Christensen, P. R., Scheuermann, A. M., Loeffler, K. E. & Helms, B. A. Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nat. Chem. 11, 442 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Science to Enable Sustainable Plastics https://www.rsc.org/globalassets/22-new-perspectives/sustainability/progressive-plastics/c19_tl_sustainability_cs3_whitepaper_a4_web_final.pdf (Royal Society of Chemistry, 2020).

  • Anastas, P. T. & Warner, J. C. In Green Chemistry: Theory and Practice 30 (Univ. Press, 1998).

  • Anastas, P. T. & Zimmerman, J. B. Design through the 12 principles of green engineering. Environ. Sci. Technol. 37, 94A–101A (2003).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicholson, S. R., Rorrer, N. A., Carpenter, A. C. & Beckham, G. T. Manufacturing energy and greenhouse gas emissions associated with plastics consumption. Joule 5, 673–686 (2021).

    CAS 

    Google Scholar
     



  • Source link

    Invest In Films & Earn Yearly

    Invest in films & earn yearly

    initial deposit returned + 25% min on top

    + 50% return on royalties for life

    This will close in 20 seconds