• Rosenbaum, D. A. Human Motor Control (Elsevier, 2010).

  • Mayrhofer, J. M. et al. Distinct contributions of whisker sensory cortex and tongue-jaw motor cortex in a goal-directed sensorimotor transformation. Neuron 103, 1034–1043.e5 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, T.-W., Li, N., Daie, K. & Svoboda, K. A map of anticipatory activity in mouse motor cortex. Neuron 94, 866–879.e4 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Economo, M. N. et al. Distinct descending motor cortex pathways and their roles in movement. Nature 563, 79–84 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, Z. et al. A cortico-cerebellar loop for motor planning. Nature 563, 113–116 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, Z. V. et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 81, 179–194 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Inagaki, H. K., Fontolan, L., Romani, S. & Svoboda, K. Discrete attractor dynamics underlies persistent activity in the frontal cortex. Nature 566, 212–217 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, N., Chen, T.-W., Guo, Z. V., Gerfen, C. R. & Svoboda, K. A motor cortex circuit for motor planning and movement. Nature 519, 51–56 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, N., Daie, K., Svoboda, K. & Druckmann, S. Robust neuronal dynamics in premotor cortex during motor planning. Nature 532, 459–464 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Komiyama, T. et al. Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature 464, 1182–1186 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurnikova, A., Moore, J. D., Liao, S.-M., Deschênes, M. & Kleinfeld, D. Coordination of orofacial motor actions into exploratory behavior by rat. Curr. Biol. 27, 688–696 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McElvain, L. E. et al. Circuits in the rodent brainstem that control whisking in concert with other orofacial motor actions. Neuroscience 368, 152–170 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Welker, W. I. Analysis of sniffing of the albino rat 1). Behaviour 22, 223–244 (1964).


    Google Scholar
     

  • Chartier, J., Anumanchipalli, G. K., Johnson, K. & Chang, E. F. Encoding of articulatory kinematic trajectories in human speech sensorimotor cortex. Neuron 98, 1042–1054.e4 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Svoboda, K. & Li, N. Neural mechanisms of movement planning: motor cortex and beyond. Curr. Opin. Neurobiol. 49, 33–41 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Ayling, O. G. S., Harrison, T. C., Boyd, J. D., Goroshkov, A. & Murphy, T. H. Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice. Nat. Methods 6, 219–224 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Guo, J.-Z. et al. Cortex commands the performance of skilled movement. eLife 4, e10774 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clemens, A. M., Fernandez Delgado, Y., Mehlman, M. L., Mishra, P. & Brecht, M. Multisensory and motor representations in rat oral somatosensory cortex. Sci. Rep. 8, 13556 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Proske, U. & Gandevia, S. C. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 92, 1651–1697 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Franklin, D. W. & Wolpert, D. M. Computational mechanisms of sensorimotor control. Neuron 72, 425–442 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Shadmehr, R., Smith, M. A. & Krakauer, J. W. Error correction, sensory prediction, and adaptation in motor control. Annu. Rev. Neurosci. 33, 89–108 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Chesler, A. T. et al. The role of PIEZO2 in human mechanosensation. N. Engl. J. Med. 375, 1355–1364 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inagaki, H. K., Inagaki, M., Romani, S. & Svoboda, K. Low-dimensional and monotonic preparatory activity in mouse anterior lateral motor cortex. J. Neurosci. 38, 4163–4185 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stapleton, J. R. Rapid taste responses in the gustatory cortex during licking. J. Neurosci. 26, 4126–4138 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Accolla, R., Bathellier, B., Petersen, C. C. H. & Carleton, A. Differential spatial representation of taste modalities in the rat gustatory cortex. J. Neurosci. 27, 1396–1404 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, X. & Costa, R. M. Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature 466, 457–462 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kriegeskorte, N. & Douglas, P. K. Interpreting encoding and decoding models. Curr. Opin. Neurobiol. 55, 167–179 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russo, A. A. et al. Neural trajectories in the supplementary motor area and motor cortex exhibit distinct geometries, compatible with different classes of computation. Neuron 107, 745–758.e6 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Russo, A. A. et al. Motor cortex embeds muscle-like commands in an untangled population response. Neuron 97, 953–966.e8 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evarts, E. V. & Tanji, J. Reflex and intended responses in motor cortex pyramidal tract neurons of monkey. J. Neurophysiol. 39, 1069–1080 (1976).

    CAS 
    PubMed 

    Google Scholar
     

  • Heindorf, M., Arber, S. & Keller, G. B. Mouse motor cortex coordinates the behavioral response to unpredicted sensory feedback. Neuron 99, 1040–1054.e5 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pruszynski, J. A. et al. Primary motor cortex underlies multi-joint integration for fast feedback control. Nature 478, 387–390 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott, S. H., Cluff, T., Lowrey, C. R. & Takei, T. Feedback control during voluntary motor actions. Curr. Opin. Neurobiol. 33, 85–94 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Stavisky, S. D., Kao, J. C., Ryu, S. I. & Shenoy, K. V. Motor cortical visuomotor feedback activity is initially isolated from downstream targets in output-null neural state space dimensions. Neuron 95, 195–208.e9 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bollu, T. et al. Cortex-dependent corrections as the tongue reaches for and misses targets. Nature 594, 82–87 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanji, J. Sequential organization of multiple movements: involvement of cortical motor areas. Annu. Rev. Neurosci. 24, 631–651 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Desrochers, T. M., Burk, D. C., Badre, D. & Sheinberg, D. L. The monitoring and control of task sequences in human and non-human primates. Front. Syst. Neurosci. 9, 185 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shima, K. & Tanji, J. Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. J. Neurophysiol. 84, 2148–2160 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Tanji, J. & Shima, K. Role for supplementary motor area cells in planning several movements ahead. Nature 371, 413–416 (1994).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sohn, J.-W. & Lee, D. Order-dependent modulation of directional signals in the supplementary and presupplementary motor areas. J. Neurosci. 27, 13655–13666 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chabrol, F. P., Blot, A. & Mrsic-Flogel, T. D. Cerebellar contribution to preparatory activity in motor neocortex. Neuron 103, 506–519.e4 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, S. et al. Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat. Methods 8, 745–752 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Savitt, J. M. Bcl-x is required for proper development of the mouse substantia nigra. J. Neurosci. 25, 6721–6728 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taniguchi, H. et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71, 995–1013 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, X. et al. Deletion of PIK3C3/Vps34 in sensory neurons causes rapid neurodegeneration by disrupting the endosomal but not the autophagic pathway. Proc. Natl Acad. Sci. USA 107, 9424–9429 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proc. IEEE Conf. Computer Vision and Pattern Recognition 770–778 (2016).

  • Badrinarayanan, V., Kendall, A. & Cipolla, R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2017).

  • Mowery, T. M., Kotak, V. C. & Sanes, D. H. Transient hearing loss within a critical period causes persistent changes to cellular properties in adult auditory cortex. Cereb. Cortex 25, 2083–2094 (2015).

    PubMed 

    Google Scholar
     

  • Pachitariu, M., Steinmetz, N. A., Kadir, S. N., Carandini, M. & Harris, K. D. Fast and accurate spike sorting of high-channel count probes with KiloSort. Adv. Neural Inf. Process. Syst. https://papers.nips.cc/paper/2016/file/1145a30ff80745b56fb0cecf65305017-Paper.pdf (2016).

  • Hill, D. N., Mehta, S. B. & Kleinfeld, D. Quality metrics to accompany spike sorting of extracellular signals. J. Neurosci. 31, 8699–8705 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Navratilova, Z., Godfrey, K. B. & McNaughton, B. L. Grids from bands, or bands from grids? An examination of the effects of single unit contamination on grid cell firing fields. J. Neurophysiol. 115, 992–1002 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Saravanan, V., Berman, G. J. & Sober, S. J. Application of the hierarchical bootstrap to multi-level data in neuroscience. Preprint at https://arxiv.org/abs/2007.07797 (2020).

  • Williams, A. H. & Linderman, S. W. Statistical neuroscience in the single trial limit. Curr. Opin. Neurobiol. 70, 193–205 (2021).

  • Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67, 301–320 (2005).

    MathSciNet 
    MATH 

    Google Scholar
     



  • Source link

    Invest In Films & Earn Yearly

    Invest in films & earn yearly

    initial deposit returned + 25% min on top

    + 50% return on royalties for life

    This will close in 20 seconds