• Chiao, J. Y. Neural basis of social status hierarchy across species. Curr. Opin. Neurobiol. 20, 803–809 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Wang, F., Kessels, H. W. & Hu, H. The mouse that roared: neural mechanisms of social hierarchy. Trends Neurosci. 37, 674–682 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Bernstein, I. S. Dominance: the baby and the bathwater. Behav. Brain Sci. 4, 419–457 (1981).

    Article 

    Google Scholar
     

  • Dewsbury, D. A. Dominance rank, copulatory behavior, and differential reproduction. Q. Rev. Biol. 57, 135–159 (1982).

    CAS 
    Article 

    Google Scholar
     

  • Karamihalev, S. et al. Social dominance mediates behavioral adaptation to chronic stress in a sex-specific manner. eLife 9, e58723 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Hou, X. H. et al. Central control circuit for context-dependent micturition. Cell 167, 73–86 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Zhou, T. et al. History of winning remodels thalamo-PFC circuit to reinforce social dominance. Science 357, 162–168 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Wang, F. et al. Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science 334, 693–697 (2011).

    CAS 
    Article 

    Google Scholar
     

  • So, N., Franks, B., Lim, S. & Curley, J. P. A social network approach reveals associations between mouse social dominance and brain gene expression. PLoS ONE 10, e0134509 (2015).

    Article 

    Google Scholar
     

  • Zink, C. F. et al. Know your place: neural processing of social hierarchy in humans. Neuron 58, 273–283 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Ligneul, R., Obeso, I., Ruff, C. C. & Dreher, J.-C. Dynamical representation of dominance relationships in the human rostromedial prefrontal cortex. Curr. Biol. 26, 3107–3115 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Murugan, M. et al. Combined social and spatial coding in a descending projection from the prefrontal cortex. Cell 171, 1663–1677 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Levy, D. R. et al. Dynamics of social representation in the mouse prefrontal cortex. Nat. Neurosci. 22, 2013–2022 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Lee, C. R., Chen, A. & Tye, K. M. The neural circuitry of social homeostasis: consequences of acute versus chronic social isolation. Cell 184, 1500–1516 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Escola, S., Fontanini, A., Katz, D. & Paninski, L. Hidden Markov models for the stimulus-response relationships of multistate neural systems. Neural Comput. 23, 1071–1132 (2011).

    MathSciNet 
    Article 

    Google Scholar
     

  • Calhoun, A. J., Pillow, J. W. & Murthy, M. Unsupervised identification of the internal states that shape natural behavior. Nat. Neurosci. 22, 2040–2049 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Piva, M. et al. The dorsomedial prefrontal cortex computes task-invariant relative subjective value for self and other. eLife 8, e44939 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Dugatkin, L. A. Winner and loser effects and the structure of dominance hierarchies. Behav. Ecol. 8, 583–587 (1997).

    Article 

    Google Scholar
     

  • Nieh, E. H. et al. Inhibitory input from the lateral hypothalamus to the ventral tegmental area disinhibits dopamine neurons and promotes behavioral activation. Neuron 90, 1286–1298 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Rangel, M. J., Baldo, M. V. C., Canteras, N. S. & Hahn, J. D. Evidence of a role for the lateral hypothalamic area juxtadorsomedial region (LHAjd) in defensive behaviors associated with social defeat. Front. Syst. Neurosci. 10, 92 (2016).

    Article 

    Google Scholar
     

  • Li, Y. et al. Hypothalamic circuits for predation and evasion. Neuron 97, 911–924 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Burton, M. J., Rolls, E. T. & Mora, F. Effects of hunger on the responses of neurons in the lateral hypothalamus to the sight and taste of food. Exp. Neurol. 51, 668–677 (1976).

    CAS 
    Article 

    Google Scholar
     

  • Cannon, W. B. Organization for physiological homeostasis. Physiol. Rev. 9, 399–431 (1929).

    Article 

    Google Scholar
     

  • Matthews, G. A. & Tye, K. M. Neural mechanisms of social homeostasis. Ann. N. Y. Acad. Sci. 1457, 5–25 (2019).

    Article 

    Google Scholar
     

  • Munuera, J., Rigotti, M. & Salzman, C. D. Shared neural coding for social hierarchy and reward value in primate amygdala. Nat. Neurosci. 21, 415–423 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Allsop, S. A. et al. Corticoamygdala transfer of socially derived information gates observational learning. Cell 173, 1329–1342 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Felix-Ortiz, A. C., Burgos-Robles, A., Bhagat, N. D., Leppla, C. A. & Tye, K. M. Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience 321, 197–209 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).

    CAS 
    Article 

    Google Scholar
     



  • Source link