• Norton, J. R. & Sowa, J. Introduction: metal hydrides. Chem. Rev. 116, 8315–8317 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Luo, G. G. et al. Recent progress in ligand-centered homogeneous electrocatalysts for hydrogen evolution reaction. Inorg. Chem. Front. 6, 343–354 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Margarit, C. G., Asimow, N. G., Thorarinsdottir, A. E., Costentin, C. & Nocera, D. G. Impactful role of cocatalysts on molecular electrocatalytic hydrogen production. ACS Catal. 11, 4561–4567 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Shevick, S. L. et al. Catalytic hydrogen atom transfer to alkenes: a roadmap for metal hydrides and radicals. Chem. Sci. 11, 12401–12422 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Armstrong, K. C. & Waymouth, R. M. Electroreduction of benzaldehyde with a metal–ligand bifunctional hydroxycyclopentadienyl molybdenum (II) hydride. Organometallics 39, 4415–4419 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Vesborg, P. C., Seger, B. & Chorkendorff, I. B. Recent development in hydrogen evolution reaction catalysts and their practical implementation. J. Phys. Chem. 6, 951–957 (2015).

    CAS 

    Google Scholar
     

  • Crossley, S. W., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wiedner, E. S. et al. Thermodynamic hydricity of transition metal hydrides. Chem. Rev. 116, 8655–8692 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu, Y., Shaw, A. P., Estes, D. P. & Norton, J. R. Transition-metal hydride radical cations. Chem. Rev. 116, 8427–8462 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Eisenberg, D. C. & Norton, J. R. Hydrogen‐atom transfer reactions of transition‐metal hydrides. Isr. J. Chem 31, 55–66 (1991).

    CAS 
    Article 

    Google Scholar
     

  • Puls, F., Linke, P., Kataeva, O. & Knölker, H. J. Iron‐catalyzed wacker‐type oxidation of olefins at room temperature with 1, 3‐diketones or neocuproine as ligands. Angew. Chem, Int. Ed. 60, 14083–14090 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Isayama, S. & Mukaiyama, T. A new method for preparation of alcohols from olefins with molecular oxygen and phenylsilane by the use of bis (acetylacetonato) cobalt (II). Chem. Lett. 18, 1071–1074 (1989).

    Article 

    Google Scholar
     

  • Gui, J. et al. Practical olefin hydroamination with nitroarenes. Science 348, 886–891 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lo, J. C., Gui, J., Yabe, Y., Pan, C. M. & Baran, P. S. Functionalized olefin cross-coupling to construct carbon–carbon bonds. Nature 516, 343–348 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gaspar, B. & Carreira, E. M. Mild cobalt‐catalyzed hydrocyanation of olefins with tosyl cyanide. Angew. Chem. In. Ed. 46, 4519–4522 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Shigehisa, H., Aoki, T., Yamaguchi, S., Shimizu, N. & Hiroya, K. Hydroalkoxylation of unactivated olefins with carbon radicals and carbocation species as key intermediates. J. Am. Chem. Soc. 135, 10306–10309 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leggans, E. K., Barker, T. J., Duncan, K. K. & Boger, D. L. Iron (III)/NaBH4-mediated additions to unactivated alkenes: synthesis of novel 20′-vinblastine analogues. Org. Lett. 14, 1428–1431 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Song, L. et al. Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes. Nat. Chem. 12, 747–754 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wells, A. S. On the perils of unexpected silane generation. Org. Process Res. Dev. 14, 484–484 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Yu, K., Yao, F., Zeng, Q., Xie, H. & Ding, H. Asymmetric total syntheses of (+)-davisinol and (+)-18-benzoyldavisinol: A HAT-initiated transannular redox radical approach. J Am. Chem. Soc. 143, 10576–10581 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Godfrey, N. A., Schatz, D. J. & Pronin, S. V. Twelve-step asymmetric synthesis of (−)-nodulisporic acid C. J. Am. Chem. Soc. 140, 12770–12774 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kellett, R. M. & Spiro, T. G. Cobalt (I) porphyrin catalysts of hydrogen production from water. Inorg. Chem. 24, 2373–2377 (1985).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, W., Cui, L. & Liu, J. Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions. J. Alloy. Compd 821, 153542 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wiedner, E. S. & Bullock, R. M. Electrochemical detection of transient cobalt hydride intermediates of electrocatalytic hydrogen production. J. Am. Chem. Soc. 138, 8309–8318 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marinescu, S. C., Winkler, J. R. & Gray, H. B. Molecular mechanisms of cobalt-catalyzed hydrogen evolution. Proc. Natl Acad. Sci. USA 109, 15127–15131 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Beyene, B. B., Mane, S. B. & Hung, C. H. Electrochemical hydrogen evolution by cobalt (II) porphyrins: effects of ligand modification on catalytic activity, efficiency and overpotential. J. Electrochem. Soc. 165, 481 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Queyriaux, N., Jane, R. T., Massin, J., Artero, V. & Chavarot-Kerlidou, M. Recent developments in hydrogen evolving molecular cobalt (II)–polypyridyl catalysts. Coordin. Chem. Rev. 304, 3–19 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kapat, A., Sperger, T., Guven, S. & Schoenebeck, F. E-Olefins through intramolecular radical relocation. Science 363, 391–396 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Crossley, S. W., Barabé, F. & Shenvi, R. A. Simple, chemoselective, catalytic olefin isomerization. J. Am. Chem. Soc. 136, 16788–16791 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, G. et al. Radical isomerization and cycloisomerization initiated by H• transfer. J. Am. Chem. Soc. 138, 7698–7704 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kingston, C. et al. A survival guide for the “electro-curious”. Acc. Chem. Res. 53, 72–83 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gao, Y. et al. Electrochemical Nozaki–Hiyama–Kishi coupling: scope, applications, and mechanism. J. Am. Chem. Soc. 143, 9478–9488 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gnaim, S. et al. Electrochemically driven desaturation of carbonyl compounds. Nat. Chem. 13, 367–372 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lo, J. C. et al. Fe-catalyzed C–C bond construction from olefins via radicals. J. Am. Chem. Soc. 139, 2484–2503 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Felpin, F. X. & Fouquet, E. A useful, reliable and safer protocol for hydrogenation and the hydrogenolysis of O‐benzyl groups: the in situ preparation of an active Pd0/C catalyst with well‐defined properties. Chem. Eur. J. 16, 12440–12445 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Friedfeld, M. R., Margulieux, G. W., Schaefer, B. A. & Chirik, P. J. Bis (phosphine) cobalt dialkyl complexes for directed catalytic alkene hydrogenation. J. Am. Chem. Soc. 136, 13178–13181 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, X. et al. Cobalt-catalyzed regioselective olefin isomerization under kinetic control. J. Am. Chem. Soc. 140, 6873–6882 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kamei, Y. et al. Silane-and peroxide-free hydrogen atom transfer hydrogenation using ascorbic acid and cobalt-photoredox dual catalysis. Nat. Commun. 12, 966 (2021).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Van der Puyl, V., McCourt, R. O. & Shenvi, R. A. Cobalt-catalyzed alkene hydrogenation by reductive turnover. Tetrahedron Lett. 72, 153047 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Raya, B., Biswas, S. & RajanBabu, T. V. Selective cobalt-catalyzed reduction of terminal alkenes and alkynes using (EtO)2Si(Me)H as a stoichiometric reductant. ACS Catal. 6, 6318–6323 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yin, Y. N., Ding, R. Q., Ouyang, D. C., Zhang, Q. & Zhu, R. Highly chemoselective synthesis of hindered amides via cobalt-catalyzed intermolecular oxidative hydroamidation. Nat. Commun. 12, 2552 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Benkeser, R. A., Schroll, G. & Sauve, D. M. Reduction of organic compounds by lithium in low molecular weight amines. II. Stereochemistry. Chemical reduction of an isolated non-terminal double bond. J. Am. Chem. Soc. 77, 3378–3379 (1955).

    CAS 
    Article 

    Google Scholar
     

  • Fürstner, A. trans-hydrogenation, gem-hydrogenation, and trans-hydrometalation of alkynes: an interim report on an unorthodox reactivity paradigm. J. Am. Chem. Soc. 141, 11–24 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Walaijai, K., Cavill, S. A., Whitwood, A. C., Douthwaite, R. E. & Perutz, R. N. Electrocatalytic proton reduction by a cobalt (III) hydride complex with phosphinopyridine PN ligands. Inorg. Chem. 59, 18055–18067 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hickey, D. P. et al. Investigating the role of ligand electronics on stabilizing electrocatalytically relevant low-valent Co (I) intermediates. J. Am. Chem. Soc. 141, 1382–1392 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qi, X. J., Li, Z., Fu, Y., Guo, Q. X. & Liu, L. Anti-spin-delocalization effect in Co−C bond dissociation enthalpies. Organometallics 27, 2688–2698 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Yang, Y. et al. Operando methods in electrocatalysis. ACS Catal. 11, 1136–1178 (2021).

    CAS 
    Article 

    Google Scholar
     



  • Source link