• Duchêne, G. & Kraus, A. Stellar multiplicity. Annu. Rev. Astron. Astrophys. 51, 269–310 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Jennings, R. E., Cameron, D. H. M., Cudlip, W. & Hirst, C. J. IRAS observations of NGC1333. Mon. Not. R. Astron. Soc. 226, 461–471 (1987).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sandell, G., Knee, L. B. G., Aspin, C., Robson, I. E. & Russell, A. P. G. A molecular jet and bow shock in the low mass protostellar binary NGC 1333-IRAS2. Astron. Astrophys. 285, L1–L4 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • Jørgensen, J. K., Hogerheijde, M. R., van Dishoeck, E. F., Blake, G. A. & Schöier, F. L. Outflows, rotation and chemistry on small scales in the protostellar system NGC1333-IRAS2. Astron. Astrophys. 413, 993–1007 (2004).

    ADS 
    Article 

    Google Scholar
     

  • Tobin, J. J. et al. The VLA Nascent Disk and Multiplicity (VANDAM) survey of Perseus protostars. resolving the sub-arcsecond binary system in NGC 1333 IRAS2A. Astrophys. J. 798, 61 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Zucker, C. et al. Mapping distances across the perseus molecular cloud using CO observations, stellar photometry, and Gaia DR2 parallax measurements. Astrophys. J. 869, 83 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jørgensen, J. K. et al. Probing the inner 200 AU of low-mass protostars: high excitation transitions of organic molecules and continuum emission at high angular resolution toward the class 0 young stellar object NGC 1333-IRAS2A. Astrophys. J. 632, 973 (2005).

    ADS 
    Article 

    Google Scholar
     

  • Fendt, C. & Zinnecker, H. Possible bending mechanisms of protostellar jets. Astron. Astrophys. 334, 750–755 (1998).

    ADS 

    Google Scholar
     

  • Frank, A. et al. In Protostars and Planets VI (eds. Beuther, H. et al.) 451 (Univ. Arizona Press, 2014).

  • Plunkett, A. L. et al. Episodic molecular outflow in the very young protostellar cluster Serpens South. Nature 527, 70–73 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jørgensen, J. K., Belloche, A. & Garrod, R. T. Astrochemistry during the formation of stars. Annu. Rev. Astron. Astrophys. 58, 727–778 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Kuffmeier, M., Haugbølle, T. & Nordlund, Å. Zoom-in simulations of protoplanetary disks starting from GMC scales. Astrophys. J. 846, 7 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Kuruwita, R. L. & Federrath, C. The role of turbulence during the formation of circumbinary discs. Astron. Astrophys. 486, A59 (2019).


    Google Scholar
     

  • Kuruwita, R. L., Federrath, C. & Haugbølle, T. The dependence of episodic accretion on eccentricity during the formation of binary stars. Astron. Astrophys. 641, A59 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kuffmeier, M., Calcutt, H. & Kristensen, L. E. The bridge: a transient phenomenon of forming stellar multiples. Sequential formation of stellar companions in filaments around young protostars. Astron. Astrophys. 628, A112 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Pineda, J. E. et al. A protostellar system fed by a streamer of 10,500 au length. Nat. Astron. 4, 1158–1163 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Brinch, C., Jørgensen, J. K., Hogerheijde, M. R., Nelson, R. P. & Gressel, O. Misaligned disks in the binary protostar IRS 43. Astrophys. J. Lett. 830, L16 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Lee, J.-E. Chemical evolution in VeLLOs. J. Korean Astron. Soc. 40, 83–89 (2007).

    ADS 
    Article 

    Google Scholar
     

  • Visser, R. & Bergin, E. A. Fundamental aspects of episodic accretion chemistry explored with single-point models. Astrophys. J. Lett. 754, L18 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Jørgensen, J. K., Visser, R., Williams, J. P. & Bergin, E. A. Molecule sublimation as a tracer of protostellar accretion. Evidence for accretion bursts from high angular resolution C18O images. Astron. Astrophys. 579, A23 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Taquet, V., Wirström, E. S. & Charnley, S. B. Formation and recondensation of complex organic molecules during protostellar luminosity outbursts. Astrophys. J. 821, 46 (2016).

    ADS 
    Article 

    Google Scholar
     

  • van ’t Hoff, M. L. R., Bergin, E. A., Jørgensen, J. K. & Blake, G. A. Carbon-grain sublimation: a new top-down component of protostellar chemistry. Astrophys. J. Lett. 897, L38 (2020).

    ADS 
    Article 

    Google Scholar
     

  • McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. In Proc. Astronomical Data Analysis Software and Systems XVI (eds Shaw, R. A., Hill, F. & Bell, D. J.) Vol. 376, Astronomical Society of the Pacific Conference Series, 127 (Astron. Soc. Pacific, 2007).

  • Karska, A. et al. The Herschel-PACS legacy of low-mass protostars: the properties of warm and hot gas components and their origin in far-UV illuminated shocks. Astrophys. J. Suppl. Ser. 235, 30 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Artur de la Villarmois, E. et al. Physical and chemical fingerprint of protostellar disc formation. Astron. Astrophys. 626, A71 (2019).

    Article 

    Google Scholar
     

  • Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Demleitner, M. & Andrae, R. Estimating distances from parallaxes. V. Geometric and photogeometric distances to 1.47 billion stars in Gaia early data release 3. Astron. J 161, 147 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Rodgers, S. D. & Charnley, S. B. Chemical evolution in protostellar envelopes: cocoon chemistry. Astrophys. J. 585, 355–371 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jørgensen, J. K., Schöier, F. L. & van Dishoeck, E. F. Physical structure and CO abundance of low-mass protostellar envelopes. Astron. Astrophys. 389, 908–930 (2002).

    ADS 
    Article 

    Google Scholar
     

  • Kristensen, L. E. et al. Water in star-forming regions with Herschel (WISH). II. Evolution of 557 GHz 110-101 emission in low-mass protostars. Astron. Astrophys. 542, A8 (2012).

    Article 

    Google Scholar
     

  • Teyssier, R. Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. Astron. Astrophys. 385, 337–364 (2002).

    ADS 
    Article 

    Google Scholar
     

  • Haugbølle, T., Padoan, P. & Nordlund, Å. The stellar IMF from isothermal MHD turbulence. Astrophys. J. 854, 35 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Offner, S. S. R., Klein, R. I., McKee, C. F. & Krumholz, M. R. The effects of radiative transfer on low-mass star formation. Astrophys. J. 703, 131–149 (2009).

    ADS 
    Article 

    Google Scholar
     

  • Bate, M. R. Stellar, brown dwarf and multiple star properties from a radiation hydrodynamical simulation of star cluster formation. Mon. Not. R. Astron. Soc. 419, 3115–3146 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Klein, R. I. Feedback effects in the high mass and low mass star formation. In Proc. Numerical Modeling of Space Plasma Flows, Astronum-2009 (eds Pogorelov, N. V. et al.) Vol. 429, Astronomical Society of the Pacific Conference Series, 97 (Astron. Soc. Pacific, 2010).

  • Krumholz, M. R., Klein, R. I. & McKee, C. F. Radiation-hydrodynamic simulations of the formation of Orion-like star clusters. II. The initial mass function from winds, turbulence, and radiation. Astrophys. J. 754, 71 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Hennebelle, P., Commerçon, B., Lee, Y.-N. & Chabrier, G. What is the role of stellar radiative feedback in setting the stellar mass spectrum? Astrophys. J. 904, 194 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tanaka, K. E. I., Tan, J. C., Zhang, Y. & Hosokawa, T. The impact of feedback in massive star formation. II. Lower star formation efficiency at lower metallicity. Astrophys. J. 861, 68 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Kuiper, R. & Hosokawa, T. First hydrodynamics simulations of radiation forces and photoionization feedback in massive star formation. Astron. Astrophys. 616, A101 (2018).

    ADS 
    Article 

    Google Scholar
     



  • Source link