• Joazeiro, C. A. P. Ribosomal stalling during translation: providing substrates for ribosome-associated protein quality control. Annu. Rev. Cell Dev. Biol. 33, 343–368 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Meydan, S. & Guydosh, N. R. A cellular handbook for collided ribosomes: surveillance pathways and collision types. Curr. Genet. 67, 19–26 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Modrich, P. Mechanisms in E. coli and human mismatch repair (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 55, 8490–8501 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moore, S. D. & Sauer, R. T. The tmRNA system for translational surveillance and ribosome rescue. Annu. Rev. Biochem. 76, 101–124 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Joazeiro, C. A. P. Mechanisms and functions of ribosome-associated protein quality control. Nat. Rev. Mol. Cell Biol. 20, 368–383 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venkataraman, K., Guja, K. E., Garcia-Diaz, M. & Karzai, A. W. Non-stop mRNA decay: a special attribute of trans-translation mediated ribosome rescue. Front. Microbiol. 5, 93 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howard, C. J. & Frost, A. Ribosome-associated quality control and CAT tailing. Crit. Rev. Biochem. Mol. Biol. 56, 603–620 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Lytvynenko, I. et al. Alanine tails signal proteolysis in bacterial ribosome-associated quality control. Cell 178, 76–90 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Orazio, K. N. & Green, R. Ribosome states signal RNA quality control. Mol. Cell 81, 1372–1383 (2021).

    PubMed 

    Google Scholar
     

  • Vind, A. C., Genzor, A. V. & Bekker-Jensen, S. Ribosomal stress-surveillance: three pathways is a magic number. Nucleic Acids Res. 48, 10648–10661 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ikeuchi, K. et al. Collided ribosomes form a unique structural interface to induce Hel2‐driven quality control pathways. EMBO J. 38, 1–40 (2019).


    Google Scholar
     

  • Simms, C. L., Yan, L. L. & Zaher, H. S. Ribosome collision is critical for quality control during no-go decay. Mol. Cell 68, 361–373 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Juszkiewicz, S. et al. ZNF598 is a quality control sensor of collided ribosomes. Mol. Cell 72, 469–481 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garzia, A. et al. The E3 ubiquitin ligase and RNA-binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs. Nat. Commun. 8, 16056 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sundaramoorthy, E. et al. ZNF598 and RACK1 regulate mammalian ribosome-associated quality control function by mediating regulatory 40S ribosomal ubiquitylation. Mol. Cell 65, 751–760 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Juszkiewicz, S., Speldewinde, S. H., Wan, L., Svejstrup, J. Q. & Hegde, R. S. The ASC-1 complex disassembles collided ribosomes. Mol. Cell 79, 603–614 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuo, Y. et al. RQT complex dissociates ribosomes collided on endogenous RQC substrate SDD1. Nat. Struct. Mol. Biol. 27, 323–332 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Matsuo, Y. et al. Ubiquitination of stalled ribosome triggers ribosome-associated quality control. Nat. Commun. 8, 159 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glover, M. L. et al. NONU-1 encodes a conserved endonuclease required for mRNA translation surveillance. Cell Rep. 30, 4321–4331 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Orazio, K. N. et al. The endonuclease Cue2 cleaves mRNAs at stalled ribosomes during no go decay. eLife 8, e49117 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nürenberg-Goloub, E. & Tampé, R. Ribosome recycling in mRNA translation, quality control, and homeostasis. Biol. Chem. 401, 47–61 (2019).

    PubMed 

    Google Scholar
     

  • Donaldson, K. M., Yin, H., Gekakis, N., Supek, F. & Joazeiro, C. A. P. Ubiquitin signals protein trafficking via interaction with a novel ubiquitin binding domain in the membrane fusion regulator, Vps9p. Curr. Biol. 13, 258–262 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Burby, P. E. & Simmons, L. A. MutS2 promotes homologous recombination in Bacillus subtilis. J. Bacteriol. 199, e00682-16 (2017).

    PubMed 

    Google Scholar
     

  • Pinto, A. V. et al. Suppression of homologous and homeologous recombination by the bacterial MutS2 protein. Mol. Cell 17, 113–120 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Hingorani, M. M. Mismatch binding, ADP–ATP exchange and intramolecular signaling during mismatch repair. DNA Repair 38, 24–31 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Groothuizen, F. S. & Sixma, T. K. The conserved molecular machinery in DNA mismatch repair enzyme structures. DNA Repair 38, 14–23 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Kyrpides, N. C., Woese, C. R. & Ouzounis, C. A. KOW: a novel motif linking a bacterial transcription factor with ribosomal proteins. Trends Biochem. Sci. 21, 425–426 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Fukui, K. & Kuramitsu, S. Structure and function of the small MutS-related domain. Mol. Biol. Int. 2011, 691735 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sachadyn, P. Conservation and diversity of MutS proteins. Mutat. Res. 694, 20–30 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Pochopien, A. A. et al. Structure of Gcn1 bound to stalled and colliding 80S ribosomes. Proc. Natl Acad. Sci. USA 118, e2022756118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sohmen, D. et al. Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling. Nat. Commun. 6, 6941 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, A. M., Costello, M. S., Kettring, A. H., Wingo, R. J. & Moore, S. D. Ribosome collisions alter frameshifting at translational reprogramming motifs in bacterial mRNAs. Proc. Natl Acad. Sci. USA 116, 21769–21779 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borovinskaya, M. A., Shoji, S., Holton, J. M., Fredrick, K. & Cate, J. H. D. A steric block in translation caused by the antibiotic spectinomycin. ACS Chem. Biol. 2, 545–552 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brodersen, D. E. et al. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103, 1143–1154 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Svetlov, M. S. et al. High-resolution crystal structures of ribosome-bound chloramphenicol and erythromycin provide the ultimate basis for their competition. RNA 25, 600–606 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Filbeck, S. et al. Mimicry of canonical translation elongation underlies alanine tail synthesis in RQC. Mol. Cell 81, 104–114 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Crowe-McAuliffe, C. et al. Structural basis for bacterial ribosome-associated quality control by RqcH and RqcP. Mol. Cell 81, 115–126 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Takada, H. et al. RqcH and RqcP catalyze processive poly-alanine synthesis in a reconstituted ribosome-associated quality control system. Nucleic Acids Res. 49, 8355–8369 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thrun, A. et al. Convergence of mammalian RQC and C-end rule proteolytic pathways via alanine tailing. Mol. Cell 81, 2112–2122 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Korostelev, A., Trakhanov, S., Laurberg, M. & Noller, H. F. Crystal structure of a 70S ribosome–tRNA complex reveals functional interactions and rearrangements. Cell 126, 1065–1077 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Tejada-Arranz, A., de Crécy-Lagard, V. & de Reuse, H. Bacterial RNA degradosomes: molecular machines under tight control. Trends Biochem. Sci. 45, 42–57 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Arnaud, M., Chastanet, A. & Débarbouillé, M. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl. Environ. Microbiol. 70, 6887–6891 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koo, B.-M. et al. Construction and analysis of two genome-scale deletion libraries for Bacillus subtilis. Cell Syst. 4, 291–305 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mende, D. R. et al. proGenomes2: an improved database for accurate and consistent habitat, taxonomic and functional annotations of prokaryotic genomes. Nucleic Acids Res. 48, D621–D625 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Bucher, P., Karplus, K., Moeri, N. & Hofmann, K. A flexible motif search technique based on generalized profiles. Comput. Chem. 20, 3–23 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Levy, J. A., LaFlamme, C. W., Tsaprailis, G., Crynen, G. & Page, D. T. Dyrk1a mutations cause undergrowth of cortical pyramidal neurons via dysregulated growth factor signaling. Biol. Psychiatry 90, 295–306 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7, 253–267 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Crowe-McAuliffe, C. et al. Structural basis for antibiotic resistance mediated by the Bacillus subtilis ABCF ATPase VmlR. Proc. Natl Acad. Sci. USA 115, 8978–8983 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matzov, D. et al. The cryo-EM structure of hibernating 100S ribosome dimer from pathogenic Staphylococcus aureus. Nat. Commun. 8, 723 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffman, D. W. et al. Crystal structure of prokaryotic ribosomal protein L9: a bi-lobed RNA-binding protein. EMBO J. 13, 205–212 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmermann, L. et al. A completely reimplemented MPI Bioinformatics Toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    CAS 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D 74, 519–530 (2018).

    CAS 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Ribeiro, J. V. et al. QwikMD—integrative molecular dynamics toolkit for novices and experts. Sci. Rep. 6, 26536 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trabuco, L. G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rundlet, E. J. et al. Structural basis of early translocation events on the ribosome. Nature 595, 741–745 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loveland, A. B., Demo, G. & Korostelev, A. A. Cryo-EM of elongating ribosome with EF-Tu•GTP elucidates tRNA proofreading. Nature 584, 640–645 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Amiri, H. & Noller, H. F. Structural evidence for product stabilization by the ribosomal mRNA helicase. RNA 25, 364–375 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link