• Schuchat, A. et al. Bacterial meningitis in the United States in 1995. N. Engl. J. Med. 337, 970–976 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • van de Beek, D. et al. Clinical features and prognostic factors in adults with bacterial meningitis. N. Engl. J. Med. 351, 1849–1859 (2004).

    PubMed 

    Google Scholar
     

  • Charlier, C. et al. Clinical features and prognostic factors of listeriosis: the MONALISA national prospective cohort study. Lancet Infect. Dis. 17, 510–519 (2017).

    PubMed 

    Google Scholar
     

  • Mailles, A. & Stahl, J. Infectious encephalitis in France in 2007: a national prospective study. Clin. Infect. Dis. 49, 1838–1847 (2009).

    PubMed 

    Google Scholar
     

  • Skogberg, K. et al. Clinical presentation and outcome of listeriosis in patients with and without immunosuppressive therapy. Clin. Infect. Dis. 14, 815–821 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Maury, M. M. et al. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat. Genet. 48, 308–313 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Disson, O. et al. Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature 455, 1114–1118 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Drevets, D. A., Jelinek, T. A. & Freitag, N. E. Listeria monocytogenes-infected phagocytes can initiate central nervous system infection in mice. Infect. Immun. 69, 1344–1350 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Join-Lambert, O. F. et al. Listeria monocytogenes-infected bone marrow myeloid cells promote bacterial invasion of the central nervous system. Cell. Microbiol. 7, 167–180 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Cantinelli, T. et al. “Epidemic clones” of Listeria monocytogenes are widespread and ancient clonal groups. J. Clin. Microbiol. 51, 3770–3779 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bécavin, C. et al. Comparison of widely used Listeria monocytogenes strains EGD, 10403S, and EGD-e highlights genomic variations underlying differences in pathogenicity. mBio 5, e00969-14 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pizarro-Cerdá, J., Lecuit, M. & Cossart, P. in Molecular Cellular Microbiology Vol. 31 (eds Sansonetti, P. & Zychlinsky, A.) 161–177 (Academic Press, 2002).

  • Boring, L. et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Invest. 100, 2552–2561 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kocks, C. et al. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68, 521–531 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Tilney, L. G. & Portnoy, D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597–1608 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Lecuit, M. et al. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292, 1722–1725 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Moura, A. et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat. Microbiol. 2, 16185 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaillard, J. L., Jaubert, F. & Berche, P. The inlAB locus mediates the entry of Listeria monocytogenes into hepatocytes in vivo. J. Exp. Med. 183, 359–369 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Braun, L. et al. InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol. Microbiol. 25, 285–294 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Dramsi, S. et al. Entry of Listeria monocytogenes into hepatocytes requires expression of InIB, a surface protein of the internalin multigene family. Mol. Microbiol. 16, 251–261 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Lane, F. C. & Unanue, E. R. Requirement of thymus (T) lymphocytes for resistance to listeriosis. J. Exp. Med. 135, 1104–1112 (1972).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlüter, D. et al. Systemic immunization induces protective CD4+ and CD8+ T cell‐mediated immune responses in murine Listeria monocytogenes meningoencephalitis. Eur. J. Immunol. 25, 2384–2391 (1995).

    PubMed 

    Google Scholar
     

  • Khanna, K. M., McNamara, J. T. & Lefrançois, L. In situ imaging of the endogenous CD8 T cell response to infection. Science 318, 116–120 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doherty, P. Cell-mediated cytotoxicity. Cell 75, 607–612 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Muzio, M. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817–827 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Shen, Y., Naujokas, M., Park, M. & Ireton, K. InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103, 501–510 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Bierne, H. et al. A role for cofilin and LIM kinase in Listeria-induced phagocytosis. J. Cell Biol. 155, 101 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weidner, K. M. et al. Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 384, 173–176 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bowers, D. C. et al. Scatter factor/hepatocyte growth factor protects against cytotoxic death in human glioblastoma via phosphatidylinositol 3-kinase- and AKT-dependent pathways. Cancer Res. 60, 4277–4283 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, G.-H. et al. Anti-apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Proc. Natl Acad. Sci. USA 98, 247–252 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsai, Y. H. L., Orsi, R. H., Nightingale, K. K. & Wiedmann, M. Listeria monocytogenes internalins are highly diverse and evolved by recombination and positive selection. Infect. Genet. Evol. 6, 378–389 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Louie, A., Zhang, T., Becattini, S., Waldor, M. K. & Portnoy, D. A. A multiorgan trafficking circuit provides purifying selection of Listeria monocytogenes virulence genes. mBio 10, e02948-19 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coureuil, M., Lécuyer, H., Bourdoulous, S. & Nassif, X. A journey into the brain: insight into how bacterial pathogens cross blood–brain barriers. Nat. Rev. Microbiol. 15, 149–159 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Devraj, G. et al. HIF-1α is involved in blood–brain barrier dysfunction and paracellular migration of bacteria in pneumococcal meningitis. Acta Neuropathol. 140, 183–208 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y., Li, J. Y., Chen, S. T., Huang, H. R. & Cai, H. The rLrp of Mycobacterium tuberculosis inhibits proinflammatory cytokine production and downregulates APC function in mouse macrophages via a TLR2-mediated PI3K/Akt pathway activation-dependent mechanism. Cell. Mol. Immunol. 13, 729–746 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Quan, J. H. et al. Intracellular networks of the PI3K/AKT and MAPK pathways for regulating Toxoplasma gondii-induced IL-23 and IL-12 production in human THP-1 cells. PLoS One 10, e0141550 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klenerman, P. & Hill, A. T cells and viral persistence: lessons from diverse infections. Nat. Immunol. 6, 873–879 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Protzer, U., Maini, M. K. & Knolle, P. A. Living in the liver: hepatic infections. Nat. Rev. Immunol. 12, 201–213 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Mackaness, G. B. Cellular resistance to infection. J. Exp. Med. 116, 381–406 (1962).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pamer, E. G. Immune responses to Listeria monocytogenes. Nat. Rev. Immunol. 4, 812–823 (2004).


    Google Scholar
     

  • Shen, H. et al. Recombinant Listeria monocytogenes as a live vaccine vehicle for the induction of protective anti-viral cell-mediated immunity. Proc. Natl Acad. Sci. USA 92, 3987–3991 (2006).

    ADS 

    Google Scholar
     

  • Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Ricci, A. et al. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J. 16, 5134 (2018).

  • Maury, M. M. et al. Spontaneous loss of virulence in natural populations of Listeria monocytogenes. Infect. Immun. 85, e00541-17 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Malissen, M. et al. Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene. EMBO J. 14, 4641–4653 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kitamura, D., Roes, J., Kühn, R. & Rajewsky, K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin μ chain gene. Nature 350, 423–426 (1991).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung, S. et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hameyer, D. et al. Toxicity of ligand-dependent Cre recombinases and generation of a conditional Cre deleter mouse allowing mosaic recombination in peripheral tissues. Physiol. Genomics 31, 32–41 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Buch, T. et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat. Methods 2, 419–426 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Matsuzawa, A. et al. A new allele of the lpr locus, lprcg, that complements the gld gene in induction of lymphadenopathy in the mouse. J. Exp. Med. 171, 519–531 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Kägi, D. et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37 (1994).

    ADS 
    PubMed 

    Google Scholar
     

  • Huang, Q. Q. et al. FLIP: a novel regulator of macrophage differentiation and granulocyte homeostasis. Blood 116, 4968–4977 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huh, C.-G. et al. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc. Natl Acad. Sci. USA 101, 4477–4482 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canli, Ö. et al. Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell 32, 869–883 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Monk, I. R., Gahan, C. G. M. & Hill, C. Tools for functional postgenomic analysis of listeria monocytogenes. Appl. Environ. Microbiol. 74, 3921–3934 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnaud, M., Chastanet, A. & Débarbouillé, M. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, Gram-positive bacteria. Appl. Environ. Microbiol. 70, 6887–6891 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Argov, T., Rabinovich, L., Sigal, N. & Herskovits, A. A. An effective counterselection system for Listeria monocytogenes and its use to characterize the monocin genomic region of strain 10403S. Appl. Environ. Microbiol. 83, e02927-16 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balestrino, D. et al. Single-cell techniques using chromosomally tagged fluorescent bacteria to study Listeria monocytogenes infection processes. Appl. Environ. Microbiol. 76, 3625–3636 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quereda, J. J. et al. A dual microscopy-based assay to assess Listeria monocytogenes cellular entry and vacuolar escape. Appl. Environ. Microbiol. 82, 211–217 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Disson, O. et al. Modeling human listeriosis in natural and genetically engineered animals. Nat. Protoc. 4, 799–810 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Lu, H. et al. Subcutaneous angiotensin II infusion using osmotic pumps induces aortic aneurysms in mice. J. Vis. Exp. 103, e53191 (2015).


    Google Scholar
     



  • Source link