• Franzosi, D. B., Cacciapaglia, G., Cai, H., Deandrea, A. & Frandsen, M. Vector and axial-vector resonances in composite models of the Higgs boson. J. High Energy Phys. 2016, 76 (2016).

    Article 

    Google Scholar
     

  • Shimano, R. & Tsuji, N. Higgs mode in superconductors. Annu. Rev. Condens. Matter Phys. 11, 103–124 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Pekker, D. & Varma, C. Amplitude/Higgs modes in condensed matter physics. Annu. Rev. Condens. Matter Phys. 6, 269–297 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Klemenz, S. et al. The role of delocalized chemical bonding in square-net-based topological semimetals. J. Am. Chem. Soc. 142, 6350–6359 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Brouet, V. et al. Angle-resolved photoemission study of the evolution of band structure and charge density wave properties in RTe3 (R = Y, La, Ce, Sm, Gd, Tb, and Dy). Phys. Rev. B 77, 235104 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Lei, S. et al. High mobility in a van der Waals layered antiferromagnetic metal. Sci. Adv. 6, eaay6407 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Podolsky, D., Auerbach, A. & Arovas, D. P. Visibility of the amplitude (Higgs) mode in condensed matter. Phys. Rev. B 84, 174522 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Zeilinger, A., Gähler, R., Shull, C. G., Treimer, W. & Mampe, W. Single- and double-slit diffraction of neutrons. Rev. Mod. Phys. 60, 1067–1073 (1988).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Qu, D.-X., Hor, Y. S., Xiong, J., Cava, R. J. & Ong, N. P. Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3. Science 329, 821–824 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ryu, C., Samson, E. C. & Boshier, M. G. Quantum interference of currents in an atomtronic SQUID. Nat. Commun. 11, 3338 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Cleuziou, J.-P., Wernsdorfer, W., Bouchiat, V., Ondarçuhu, T. & Monthioux, M. Carbon nanotube superconducting quantum interference device. Nat. Nanotechnol. 1, 53–59 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Giazotto, F., Peltonen, J. T., Meschke, M. & Pekola, J. P. Superconducting quantum interference proximity transistor. Nat. Phys. 6, 254–259 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Mittal, S., Orre, V. V., Goldschmidt, E. A. & Hafezi, M. Tunable quantum interference using a topological source of indistinguishable photon pairs. Nat. Photonics 15, 542–548 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wall, S. et al. Quantum interference between charge excitation paths in a solid-state Mott insulator. Nat. Phys. 7, 114–118 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Popescu, S. Dynamical quantum non-locality. Nat. Phys. 6, 151–153 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nat. Phys. 8, 871–876 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Lavagnini, M. et al. Raman scattering evidence for a cascade evolution of the charge-density-wave collective amplitude mode. Phys. Rev. B 81, 081101 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Kogar, A. et al. Light-induced charge density wave in LaTe3. Nat. Phys. 16, 159–163 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Yusupov, R. V., Mertelj, T., Chu, J.-H., Fisher, I. R. & Mihailovic, D. Single-particle and collective mode couplings associated with 1- and 2-directional electronic ordering in metallic RTe3 (R = Ho, Dy, Tb). Phys. Rev. Lett. 101, 246402 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Liu, H. Y. et al. Possible observation of parametrically amplified coherent phasons in K0.3MoO3 using time-resolved extreme-ultraviolet angle-resolved photoemission spectroscopy. Phys. Rev. B 88, 045104 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Zocco, D. A. et al. Pressure dependence of the charge-density-wave and superconducting states in GdTe3,TbTe3, and DyTe3. Phys. Rev. B 91, 205114 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 10, 765–769 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Yoshikawa, N. et al. Ultrafast switching to an insulating-like metastable state by amplitudon excitation of a charge density wave. Nat. Phys. 17, 909–914 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Mohammadzadeh, A. et al. Room temperature depinning of the charge-density waves in quasi-two-dimensional 1T-TaS2 devices. Appl. Phys. Lett. 118, 223101 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Klein, M. V. Theory of Raman scattering from charge-density-wave phonons. Phys. Rev. B 25, 7192–7208 (1982).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wang, Y. et al. The range of non-Kitaev terms and fractional particles in α-RuCl3. npj Quantum Mater. 5, 14 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Devereaux, T. P. & Hackl, R. Inelastic light scattering from correlated electrons. Rev. Mod. Phys. 79, 175–233 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Cardona, M. Light Scattering in Solids 1 (Springer, 1975).

  • Koningstein, J. A. & Mortensen, O. S. Electronic Raman spectra IV: relation between the scattering tensor and the symmetry of the crystal field. J. Opt. Soc. Am. 58, 1208 (1968).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Chen, C.-F. et al. Controlling inelastic light scattering quantum pathways in graphene. Nature 471, 617–620 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Friedman, J. & Hochstrasser, R. M. Interference effects in resonance Raman spectroscopy. Chem. Phys. Lett. 32, 414–419 (1975).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Chen, C., Yin, Y.-Y. & Elliott, D. S. Interference between optical transitions. Phys. Rev. Lett. 64, 507–510 (1990).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Eiter, H.-M. et al. Alternative route to charge density wave formation in multiband systems. Proc. Natl Acad. Sci. USA 110, 64–69 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Gray, M. J. et al. A cleanroom in a glovebox. Rev. Sci. Instrum. 91, 073909 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tian, Y. et al. Low vibration high numerical aperture automated variable temperature Raman microscope. Rev. Sci. Instrum. 87, 043105 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Maschek, M. et al. Competing soft phonon modes at the charge-density-wave transitions in DyTe3. Phys. Rev. B 98, 094304 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Powell, R. C. Symmetry, Group Theory, and the Physical Properties of Crystals Vol. 824 (Springer, 2010).



  • Source link