• Beer, T. M. et al. Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J. Clin. Oncol. 35, 40–47 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Kwon, E. D. et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 15, 700–712 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fong, P. C. et al. Pembrolizumab plus enzalutamide in abiraterone-pretreated patients with metastatic castrate resistant prostate cancer: cohort C of the phase 1b/2 KEYNOTE-365 study. J. Clin. Oncol. 37, suppl:abstr 5010 (2019)

  • Sharma, P. et al. Nivolumab plus ipilimumab for metastatic castration-resistant prostate cancer: preliminary analysis of patients in the CheckMate 650 trial. Cancer Cell. 38, 489–499 (2020).

  • Antonarakis, E. S. et al. Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: multicohort, open-label phase II KEYNOTE-199 study. J. Clin. Oncol. 38, 395–405 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Conforti, F. et al. Cancer immunotherapy efficacy and patients’ sex: a systematic review and meta-analysis. Lancet Oncol. 19, 737–746 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Small, E. J. et al. A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin. Cancer Res. 13, 1810–1815 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Kissick, H. T. et al. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc. Natl Acad. Sci. USA 111, 9887–9892 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benten, W. P. et al. Functional testosterone receptors in plasma membranes of T cells. FASEB J. 13, 123–133 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Liva, S. M. & Voskuhl, R. R. Testosterone acts directly on CD4+ T lymphocytes to increase IL-10 production. J. Immunol. 167, 2060–2067 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Walecki, M. et al. Androgen receptor modulates Foxp3 expression in CD4+CD25+Foxp3+ regulatory T-cells. Mol. Biol. Cell 26, 2845–2857 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayers, M. et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prat, A. et al. Immune-related gene expression profiling after PD-1 blockade in non-small cell lung carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res. 77, 3540–3550 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949.e916 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graff, J. N. et al. Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget 7, 52810–52817 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graff, J. N. et al. A phase II single-arm study of pembrolizumab with enzalutamide in men with metastatic castration-resistant prostate cancer progressing on enzalutamide alone. J. Immunother. Cancer. 8, e000642 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, P. L. et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827–837 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Hwang, S. S. et al. mRNA destabilization by BTG1 and BTG2 maintains T cell quiescence. Science 367, 1255–1260 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Lefebvre, C. et al. A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers. Mol. Syst. Biol. 6, 377 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarez, M. J. et al. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat. Genet. 48, 838–847 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, X. et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 543, 728–732 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Northrop, J. K., Thomas, R. M., Wells, A. D. & Shen, H. Epigenetic remodeling of the IL-2 and IFN-γ loci in memory CD8 T cells is influenced by CD4 T cells. J. Immunol. 177, 1062–1069 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Zediak, V. P., Johnnidis, J. B., Wherry, E. J. & Berger, S. L. Cutting edge: persistently open chromatin at effector gene loci in resting memory CD8+ T cells independent of transcriptional status. J. Immunol. 186, 2705–2709 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Kersh, E. N. et al. Rapid demethylation of the IFN-γ gene occurs in memory but not naive CD8 T cells. J. Immunol. 176, 4083–4093 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fornes, O. et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 48, D87–D92 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Nussing, S. et al. Efficient CRISPR/Cas9 gene editing in uncultured naive mouse T cells for in vivo studies. J. Immunol. 204, 2308–2315 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Wherry, E. J., Blattman, J. N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. 77, 4911–4927 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed, R., Salmi, A., Butler, L. D., Chiller, J. M. & Oldstone, M. B. Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence. J. Exp. Med. 160, 521–540 (1984).

    CAS 
    PubMed 

    Google Scholar
     

  • Quigley, D. A. et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell 174, 758–769.e759 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 168, 542 (2016).


    Google Scholar
     

  • Bebo, B. F., Schuster, J. C., Vandenbark, A. A. & Offner, H. Androgens alter the cytokine profile and reduce encephalitogenicity of myelin-reactive T cells. J. Immunol. 162, 35–40 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Gubbels Bupp, M. R., Potluri, T., Fink, A. L. & Klein, S. L. The confluence of sex hormones and aging on immunity. Front. Immunol. 9, 1269 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, A. A., Wojciechowski, S. E. & Hildeman, D. A. Androgens suppress antigen-specific T cell responses and IFN-γ production during intracranial LCMV infection. J. Neuroimmunol. 226, 8–19 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashley, D. J. The two “hit” and multiple “hit” theories of carcinogenesis. Br. J. Cancer 23, 313–328 (1969).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cartwright, R. A., Gurney, K. A. & Moorman, A. V. Sex ratios and the risks of haematological malignancies. Br. J. Haematol. 118, 1071–1077 (2002).

    PubMed 

    Google Scholar
     

  • Fish, E. N. The X-files in immunity: sex-based differences predispose immune responses. Nat. Rev. Immunol. 8, 737–744 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cook, M. B., Chow, W. H. & Devesa, S. S. Oesophageal cancer incidence in the United States by race, sex, and histologic type, 1977–2005. Br. J. Cancer 101, 855–859 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgren, G., Liang, L., Adami, H. O. & Chang, E. T. Enigmatic sex disparities in cancer incidence. Eur. J. Epidemiol. 27, 187–196 (2012).

    PubMed 

    Google Scholar
     

  • Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montgomery, R. B. et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 68, 4447–4454 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pernigoni, N. et al. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. Science 374, 216–224 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Edwards, A., Hammond, H. A., Jin, L., Caskey, C. T. & Chakraborty, R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12, 241–253 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Kazemi-Esfarjani, P., Trifiro, M. A. & Pinsky, L. Evidence for a repressive function of the long polyglutamine tract in the human androgen receptor: possible pathogenetic relevance for the (CAG)n-expanded neuronopathies. Hum. Mol. Genet. 4, 523–527 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Rayford, W. et al. Comparative analysis of 1152 African-American and European-American men with prostate cancer identifies distinct genomic and immunological differences. Commun. Biol. 4, 670 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Higano, C. S. et al. Real-world outcomes of sipuleucel-T treatment in PROCEED, a prospective registry of men with metastatic castration-resistant prostate. cancer. Cancer 125, 4172–4180 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • He, M. X. et al. Transcriptional mediators of treatment resistance in lethal prostate cancer. Nat. Med. 27, 426–433 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bishop, J. L. et al. PD-L1 is highly expressed in Enzalutamide resistant prostate cancer. Oncotarget 6, 234–242 (2015).

    PubMed 

    Google Scholar
     

  • Aggarwal, R. et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study. J. Clin. Oncol. 36, 2492–2503 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moran, A. E., Polesso, F. & Weinberg, A. D. Immunotherapy expands and maintains the function of high-affinity tumor-infiltrating CD8 T cells in situ. J. Immunol. 197, 2509–2521 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Polesso, F., Sarker, M., Weinberg, A. D., Murray, S. E. & Moran, A. E. OX40 agonist tumor immunotherapy does not impact regulatory T cell suppressive function. J. Immunol. 203, 2011–2019 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Polesso, F., Weinberg, A. D. & Moran, A. E. Late-stage tumor regression after PD-L1 blockade plus a concurrent OX40 agonist. Cancer Immunol. Res. 7, 269–281 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Schofield, D. J. et al. Activity of murine surrogate antibodies for durvalumab and tremelimumab lacking effector function and the ability to deplete regulatory T cells in mouse models of cancer. mAbs 13, 1857100 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polesso, F. et al. PD-1-specific “blocking” antibodies that deplete PD-1+ T cells present an inconvenient variable in preclinical immunotherapy experiments. Eur. J. Immunol. 51, 1473–1481 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Valkenburg, K. C., Amend, S. R. & Pienta, K. J. Murine prostate micro-dissection and surgical castration. J. Vis. Exp. https://doi.org/10.3791/53984 (2016).

  • Pavese, J., Ogden, I. M. & Bergan, R. C. An orthotopic murine model of human prostate cancer metastasis. J. Vis. Exp. https://doi.org/10.3791/50873 (2013).

  • Moran, A. E. et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208, 1279–1289 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray, S. E. et al. Fibroblast-adapted human CMV vaccines elicit predominantly conventional CD8 T cell responses in humans. J. Exp. Med. 214, 1889–1899 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gruner, B. M. et al. An in vivo multiplexed small-molecule screening platform. Nat. Methods 13, 883–889 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, D. & Smyth, G. K. Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res. 40, e133 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robertson, A. G. et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell 32, 204–220.e215 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinf. 12, 323 (2011).

    CAS 

    Google Scholar
     

  • Ellrott, K. et al. Scalable open science approach for mutation calling of tumor exomes using multiple genomic pipelines. Cell Syst. 6, 271–281.e277 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link