• Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M. & Poggio, T. Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29, 411–426 (2007).

    Article 

    Google Scholar
     

  • Wang, D., Su, J. & Yu, H. Feature extraction and analysis of natural language processing for deep learning English language. IEEE Access 8, 46335–46345 (2020).

    Article 

    Google Scholar
     

  • Ribeiro, A. H. et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat. Commun. 11, 1760 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lai, L. et al. Computer-aided diagnosis of pectus excavatum using CT images and deep learning methods. Sci. Rep. 10, 20294 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Yuan, B. et al. Unsupervised and supervised learning with neural network for human transcriptome analysis and cancer diagnosis. Sci. Rep. 10, 19106 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Shin, H. et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35, 1285–1298 (2016).

    Article 

    Google Scholar
     

  • Tajbakhsh, N. et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35, 1299–1312 (2016).

    Article 

    Google Scholar
     

  • LeCun, Y. & Bengio, Y. in The Handbook of Brain Theory and Neural Networks (ed. Arbib, M. A.) 255–258 (MIT Press, 1998).

  • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Barbastathis, G., Ozcan, A. & Situ, G. On the use of deep learning for computational imaging. Optica 6, 921–943 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012).


    Google Scholar
     

  • Nair, V. & Hinton, G. E. Rectified linear units improve restricted Boltzmann machines. In Proc. 27th International Conference on Machine Learning (eds Fürnkranz, J. & Joachims, T.) 807–814 (Omnipress, 2010).

  • Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2017).

    Article 

    Google Scholar
     

  • Li, H., Lin, Z., Shen, X., Brandt, J. & Hua, G. A convolutional neural network cascade for face detection. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 5325–5334 (IEEE, 2015).

  • Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Moons, B. & Verhelst, M. An energy-efficient precision-scalable ConvNet processor in 40-nm CMOS. IEEE J. Solid-State Circuits 52, 903–914 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Lee, J. et al. UNPU: an energy-efficient deep neural network accelerator with fully variable weight bit precision. IEEE J. Solid-State Circuits 54, 173–185 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Hill, P. et al. DeftNN: addressing bottlenecks for DNN execution on GPUs via synapse vector elimination and ear-compute data fission. In 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) 786–799 (IEEE, 2017).

  • Nurvitadhi, E. et al. Accelerating binarized neural networks: comparison of FPGA, CPU, GPU, and ASIC. In 2016 International Conference on Field-Programmable Technology (FPT) 77–84 (IEEE, 2016).

  • Ashtiani, F., Risi, A. & Aflatouni, F. Single-chip nanophotonic near-field imager. Optica 6, 1255–1260 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Cheng, Z., Rios, C., Perince, W. H. P., Wright, C. D. & Bhaskaran, H. On-chip photonic synapse. Sci. Adv. 3, e1700160 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Tait, A. N. et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 7, 7430 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Feldmann, J. et al. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Miscuglio, M. et al. All-optical nonlinear activation function for photonic neural networks. Opt. Mater. Express 8, 3851–3863 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jha, A., Huang, C. & Prucnal, P. R. Reconfigurable all-optical nonlinear activation functions for neuromorphic photonics. Opt. Lett. 45, 4819–4822 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zuo, Y. et al. All-optical neural network with nonlinear activation functions. Optica 6, 1132–1137 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Bueno, J. et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica 5, 756–760 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics 15, 367–373 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Chang, J. et al. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep. 8, 12324 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • AMD RadeonTM RX 6700 XT Graphics. https://www.amd.com/en/products/graphics/amd-radeon-rx-6700-xt.

  • Chollet, F. et al. Keras. https://keras.io (2015).

  • Tait, A. N. et al. Silicon photonic modulator neuron. Phys. Rev. Appl. 11, 064043 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Series B Stat. Methodol. 36, 111–147 (1974).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Lecun, Y. et al. The MNIST dataset of handwritten digits. http://yann.lecun.com/exdb/mnist/ (1999).

  • Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

    Article 

    Google Scholar
     

  • Rakowski, M. et al. 45nm CMOS — Silicon Photonics Monolithic Technology (45CLO) for next-generation, low power and high speed optical interconnects. In 2020 Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2020).

  • Fahrenkopf, N. M. et al. The AIM photonics MPW: a highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 25, 1–6 (2019).

    Article 

    Google Scholar
     

  • Borji, A., Cheng, M., Jiang, H. & Li, J. Salient object detection: a benchmark. IEEE Trans. Image Process. 24, 5706–5722 (2015).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Cheng, M., Mitra, N. J., Huang, X., Torr, P. H. S. & Hu, S. Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37, 569–582 (2015).

    Article 

    Google Scholar
     

  • Kist, A. M. Deep learning on edge TPUs. Preprint at https://arxiv.org/abs/2108.13732 (2021).

  • IMAGO Technologies’ Edge AI camera. https://imago-technologies.com/wp-content/uploads/2021/01/Specification-VisionAI-V1.2.pdf.

  • JeVois smart machine vision. https://www.jevoisinc.com/collections/jevois-hardware/products/jevois-pro-deep-learning-smart-camera.

  • Kulyukin, V. et al. On image classification in video analysis of omnidirectional Apis mellifera traffic: random reinforced forests vs. shallow convolutional networks. Appl. Sci. 11, 8141 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Chiu, T. Y., Wang, Y. & Wang, H. A 3.7–43.7-GHz low-power consumption variable gain distributed amplifier in 90-nm CMOS. IEEE Microw. Wirel. Compon. Lett. 31, 169–172 (2021).

    Article 

    Google Scholar
     

  • Xuan, Z. et al. A low-power 40 Gb/s optical receiver in silicon. In 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) 315–318 (IEEE, 2015).



  • Source link