• Gayathri, V. et al. Eccentricity estimate for black hole mergers with numerical relativity simulations. Nat. Astron. https://doi.org/10.1038/s41550-021-01568-w (2022).

  • Romero-Shaw, I., Lasky, P. D., Thrane, E. & Calderón Bustillo, J. GW190521: orbital eccentricity and signatures of dynamical formation in a binary black hole merger signal. Astrophys. J. Lett. 903, L5 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Abbott, R. et al. Properties and astrophysical implications of the 150M binary black hole merger GW190521. Astrophys. J. Lett. 900, L13 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Yang, Y. et al. Hierarchical black hole mergers in active galactic nuclei. Phys. Rev. Lett. 123, 181101 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tagawa, H., Haiman, Z. & Kocsis, B. Formation and evolution of compact-object binaries in AGN disks. Astrophys. J. 898, 25 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Peters, P. Gravitational radiation and the motion of two point masses. Phys. Rev. 136, B1224–B1232 (1964).

    ADS 
    Article 

    Google Scholar
     

  • Abbott, R. et al. GW190521: a binary black hole merger with a total mass of 150 M. Phys. Rev. Lett. 125, 101102 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bartos, I., Kocsis, B., Haiman, Z. & Márka, S. Rapid and bright stellar-mass binary black hole mergers in active galactic nuclei. Astrophys. J. 835, 165 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Levin, Y. Formation of massive stars and black holes in self-gravitating AGN discs, and gravitational waves in LISA band. Preprint at https://arxiv.org/abs/astro-ph/0307084 (2003).

  • Stone, N. C., Metzger, B. D. & Haiman, Z. Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’. Mon. Not. R. Astron. Soc. 464, 946–954 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Cantiello, M., Jermyn, A. S. & Lin, D. N. C. Stellar evolution in AGN disks. Astrophys. J. 910, 94 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • McKernan, B., Ford, K. E. S., Lyra, W. & Perets, H. B. Intermediate mass black holes in AGN discs–I. Production and growth. Mon. Not. R. Astron. Soc. 425, 460–469 (2012).

    ADS 
    Article 

    Google Scholar
     

  • McKernan, B. et al. Constraining stellar-mass black hole mergers in AGN disks detectable with LIGO. Astrophys. J. 866, 66 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Leigh, N. W. C. et al. On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening. Mon. Not. R. Astron. Soc. 474, 5672–5683 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Secunda, A. et al. Orbital migration of interacting stellar mass black holes in disks around supermassive black holes. Astrophys. J. 878, 85 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Tagawa, H., Haiman, Z., Bartos, I. & Kocsis, B. Spin evolution of stellar-mass black hole binaries in active galactic nuclei. Astrophys. J. 899, 26 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Kocsis, B., Gáspár, M. E. & Márka, S. Detection rate estimates of gravity waves emitted during parabolic encounters of stellar black holes in globular clusters. Astrophys. J. 648, 411–429 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Rodriguez, C. L. et al. Post-Newtonian dynamics in dense star clusters: formation, masses, and merger rates of highly-eccentric black hole binaries. Phys. Rev. D 98, 123005 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Samsing, J. Eccentric black hole mergers forming in globular clusters. Phys. Rev. D 97, 103014 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Graham, M. J. et al. Candidate electromagnetic counterpart to the binary black hole merger gravitational-wave event S190521g. Phys. Rev. Lett. 124, 251102 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Blanchet, L. Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 17, 2 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Samsing, J. & D’Orazio, D. J. Black hole mergers from globular clusters observable by LISA I: eccentric sources originating from relativistic N-body dynamics. Mon. Not. R. Astron. Soc. 481, 5445–5450 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Monaghan, J. J. A statistical theory of the disruption of three-body systems — II. High angular momentum. Mon. Not. R. Astron. Soc. 177, 583–594 (1976).

    ADS 
    Article 

    Google Scholar
     

  • Valtonen, M. & Karttunen, H. The Three-Body Problem (Cambridge Univ. Press, 2006).

  • Stone, N. C. & Leigh, N. W. C. A statistical solution to the chaotic, non-hierarchical three-body problem. Nature 576, 406–410 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Thompson, T. A., Quataert, E. & Murray, N. Radiation pressure-supported starburst disks and active galactic nucleus fueling. Astrophys. J. 630, 167–185 (2005).

    ADS 
    Article 

    Google Scholar
     

  • Rodriguez, C. L., Zevin, M., Pankow, C., Kalogera, V. & Rasio, F. A. Illuminating black hole binary formation channels with spins in advanced LIGO. Astrophys. J. 832, L2 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Ostriker, E. C. Dynamical friction in a gaseous medium. Astrophys. J. 513, 252–258 (1999).

    ADS 
    Article 

    Google Scholar
     

  • Kim, H. & Kim, W.-T. Dynamical friction of a circular-orbit perturber in a gaseous medium. Astrophys. J. 665, 432–444 (2007).

    ADS 
    Article 

    Google Scholar
     

  • Samsing, J., MacLeod, M. & Ramirez-Ruiz, E. The formation of eccentric compact binary inspirals and the role of gravitational wave emission in binary-single stellar encounters. Astrophys. J. 784, 71 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Samsing, J., MacLeod, M. & Ramirez-Ruiz, E. Formation of tidal captures and gravitational wave inspirals in binary-single interactions. Astrophys. J. 846, 36 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Samsing, J., MacLeod, M. & Ramirez-Ruiz, E. Dissipative evolution of unequal-mass binary–single interactions and its relevance to gravitational-wave detections. Astrophys. J. 853, 140 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Heggie, D. C. Binary evolution in stellar dynamics. Mon. Not. R. Astron. Soc. 173, 729–787 (1975).

    ADS 
    Article 

    Google Scholar
     

  • Samsing, J., Askar, A. & Giersz, M. MOCCA-SURVEY database. I. Eccentric black hole mergers during binary–single interactions in globular clusters. Astrophys. J. 855, 124 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Gondán, L. & Kocsis, B. Measurement accuracy of inspiraling eccentric neutron star and black hole binaries using gravitational waves. Astrophys. J. 871, 178 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Zevin, M., Samsing, J., Rodriguez, C., Haster, C.-J. & Ramirez-Ruiz, E. Eccentric black hole mergers in dense star clusters: the role of binary–binary encounters. Astrophys. J. 871, 91 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Li, Y.-P., Dempsey, A. M., Li, S., Li, H. & Li, J. Orbital evolution of binary black holes in active galactic nucleus disks: a disk channel for binary black hole mergers? Astrophys. J. 911, 124 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Samsing, J., Hamers, A. S. & Tyles, J. G. Effect of distant encounters on black hole binaries in globular clusters: systematic increase of in-cluster mergers in the LISA band. Phys. Rev. D 100, 043010 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     



  • Source link

    Invest In Films & Earn Yearly

    Invest in films & earn yearly

    initial deposit returned + 25% min on top

    + 50% return on royalties for life

    This will close in 20 seconds