• Velazhahan, V. et al. Structure of the class D GPCR Ste2 dimer coupled to two G proteins. Nature 589, 148–153 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weis, W. I. & Kobilka, B. K. The molecular basis of G protein-coupled receptor activation. Annu. Rev. Biochem. 87, 897–919 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blumer, K. J. & Thorner, J. Beta and gamma subunits of a yeast guanine nucleotide-binding protein are not essential for membrane association of the alpha subunit but are required for receptor coupling. Proc. Natl Acad. Sci. USA 87, 4363–4367 (1990).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raths, S., Naider, F. & Becker, J. Peptide analogues compete with the binding of α-factor to its receptor in Saccharomyces cerevisiae. J. Biol. Chem. 263, 17333–17341 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • Dosil, M., Giot, L., Davis, C. & Konopka, J. B. Dominant-negative mutations in the G-protein-coupled α-factor receptor map to the extracellular ends of the transmembrane segments. Mol. Cell. Biol. 18, 5981–5991 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, Y. H., Naider, F. & Becker, J. M. Interacting residues in an activated state of a G protein-coupled receptor. J. Biol. Chem. 281, 2263–2272 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Bajaj, A., Connelly, S. M., Gehret, A. U., Naider, F. & Dumont, M. E. Role of extracellular charged amino acids in the yeast α-factor receptor. Biochim. Biophys. Acta 1773, 707–717 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathew, E. et al. Differential interactions of fluorescent agonists and antagonists with the yeast G protein coupled receptor Ste2p. J. Mol. Biol. 409, 513–528 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuber, J., Danial, S. A., Connelly, S. M., Naider, F. & Dumont, M. E. Identification of destabilizing and stabilizing mutations of Ste2p, a G protein-coupled receptor in Saccharomyces cerevisiae. Biochemistry 54, 1787–1806 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naider, F. & Becker, J. M. A paradigm for peptide hormone–GPCR analyses. Molecules 25, 4272 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Warne, T., Edwards, P. C., Dore, A. S., Leslie, A. G. W. & Tate, C. G. Molecular basis for high-affinity agonist binding in GPCRs. Science 364, 775–778 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Josephs, T. M. et al. Structure and dynamics of the CGRP receptor in apo and peptide-bound forms. Science 372, eabf7258 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Sonnhammer, E. L., Von Heijne, G. & Krogh, A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6, 175–182 (1998).

  • Morioka, S. et al. Effect of sterol composition on the activity of the yeast G-protein-coupled receptor Ste2. Appl. Microbiol. Biotechnol. 97, 4013–4020 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Overton, M. C. & Blumer, K. J. G-protein-coupled receptors function as oligomers in vivo. Curr. Biol. 10, 341–344 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Overton, M. C., Chinault, S. L. & Blumer, K. J. Oligomerization, biogenesis, and signaling is promoted by a glycophorin A-like dimerization motif in transmembrane domain 1 of a yeast G protein-coupled receptor. J. Biol. Chem. 278, 49369–49377 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Bhattacharya, S. & Vaidehi, N. Differences in allosteric communication pipelines in the inactive and active states of a GPCR. Biophys. J. 107, 422–434 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhattacharya, S., Salomon-Ferrer, R., Lee, S. & Vaidehi, N. Conserved mechanism of conformational stability and dynamics in G-protein-coupled receptors. J. Chem. Theory Comput. 12, 5575–5584 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaidehi, N. & Bhattacharya, S. Allosteric communication pipelines in G-protein-coupled receptors. Curr. Opin. Pharmacol. 30, 76–83 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 25, 366–428 (1995).

    CAS 

    Google Scholar
     

  • Liang, Y. L. et al. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546, 118–123 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flock, T. et al. Universal allosteric mechanism for Galpha activation by GPCRs. Nature 524, 173–179 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parrish, W., Eilers, M., Ying, W. & Konopka, J. B. The cytoplasmic end of transmembrane domain 3 regulates the activity of the Saccharomyces cerevisiae G-protein-coupled α-factor receptor. Genetics 160, 429–443 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, J. C., Duell, K., Saracino, M. & Konopka, J. B. Identification of residues that contribute to receptor activation through the analysis of compensatory mutations in the G protein-coupled α-factor receptor. Biochemistry 44, 1278–1287 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H., Lee, B. K., Naider, F. & Becker, J. M. Identification of specific transmembrane residues and ligand-induced interface changes involved in homo-dimer formation of a yeast G protein-coupled receptor. Biochemistry 48, 10976–10987 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Dube, P. & Konopka, J. B. Identification of a polar region in transmembrane domain 6 that regulates the function of the G protein-coupled α-factor receptor. Mol. Cell. Biol. 18, 7205–7215 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dube, P., DeCostanzo, A. & Konopka, J. B. Interaction between transmembrane domains five and six of the α-factor receptor. J. Biol. Chem. 275, 26492–26499 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Umanah, G. K., Huang, L.-Y., Maccarone, J. M., Naider, F. & Becker, J. M. Changes in conformation at the cytoplasmic ends of the fifth and sixth transmembrane helices of a yeast G protein-coupled receptor in response to ligand binding. Biochemistry 50, 6841–6854 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Clark, C. D., Palzkill, T. & Botstein, D. Systematic mutagenesis of the yeast mating pheromone receptor third intracellular loop. J. Biol. Chem. 269, 8831–8841 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Sommers, C. M. et al. A limited spectrum of mutations causes constitutive activation of the yeast alpha-factor receptor. Biochemistry 39, 6898–6909 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Garcia-Nafria, J. & Tate, C. G. Cryo-EM structures of GPCRs coupled to Gs, Gi and Go. Mol. Cell. Endocrinol. 488, 1–13 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Qi, X. et al. Cryo-EM structure of oxysterol-bound human Smoothened coupled to a heterotrimeric Gi. Nature 571, 279–283 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, C. et al. Structural basis of GABA B receptor–G i protein coupling. Nature 594, 594–598 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seven, A. B. et al. G-protein activation by a metabotropic glutamate receptor. Nature 595, 450–454 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–555 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hollenstein, K. et al. Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499, 438–443 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, Y. L. et al. Toward a structural understanding of class B GPCR peptide binding and activation. Mol. Cell. 77, 656–668.e655 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Byrne, E. F. X. et al. Structural basis of Smoothened regulation by its extracellular domains. Nature 535, 517–522 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao, C. et al. Cryo-EM structures of inactive and active GABAB receptor. Cell. Res. 30, 564–573 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Nafría, J., Watson, J. F. & Greger, I. H. IVA cloning: a single-tube universal cloning system exploiting bacterial in vivo assembly. Sci. Rep. 6, 27459 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7, 253–267 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 16, 1146–1152 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 

    Google Scholar
     

  • Cardone, G., Heymann, J. B. & Steven, A. C. One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. J. Struct. Biol. 184, 226–236 (2013).

    PubMed 

    Google Scholar
     

  • Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).


    Google Scholar
     

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    PubMed 

    Google Scholar
     

  • Burnley, T., Palmer, C. M. & Winn, M. Recent developments in the CCP-EM software suite. Acta Crystallogr. D 73, 469–477 (2017).

    CAS 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D 65, 1074–1080 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long, F. et al. AceDRG: a stereochemical description generator for ligands. Acta Crystallogr. D 73, 112–122 (2017).

    CAS 

    Google Scholar
     

  • Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terwilliger, T. C., Ludtke, S. J., Read, R. J., Adams, P. D. & Afonine, P. V. Improvement of cryo-EM maps by density modification. Nat. Methods 17, 923–927 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The PyMOL molecular graphics system (Schrodinger, 2010).

  • Ho, B. K. & Gruswitz, F. HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 8, 49 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Jo, S., Lim, J. B., Klauda, J. B. & Im, W. CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. 97, 50–58 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, E. L. et al. CHARMM-GUI membrane builder toward realistic biological membrane simulations. J. Comput. Chem. 35, 1997–2004 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jo, S., Kim, T. & Im, W. Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS ONE 2, e880 (2007).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martyna, G. J., Klein, M. L. & Tuckerman, M. Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635–2643 (1992).

    ADS 

    Google Scholar
     

  • Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    ADS 
    CAS 

    Google Scholar
     

  • Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an Nlog (N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Nivedha, A. K. et al. Identifying functional hotspot residues for biased ligand design in G-protein-coupled receptors. Mol. Pharmacol. 93, 288–296 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nivedha, A. K. Decoding angiotensin II type 1 receptor allosteric communication to Gq and β-arrestin. Preprint at https://doi.org/10.1101/2021.05.17.444454 (2021).

  • Mentesana, P. E. & Konopka, J. B. Mutational analysis of the role of N-glycosylation in alpha-factor receptor function. Biochemistry 40, 9685–9694 (2001).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Invest In Films & Earn Yearly

    Invest in films & earn yearly

    initial deposit returned + 25% min on top

    + 50% return on royalties for life

    This will close in 20 seconds