• Cohen, Y. et al. The Dragonfly Nearby Galaxies Survey. V. HST/ACS observations of 23 low surface brightness objects in the fields of NGC 1052, NGC 1084, M96, and NGC 4258. Astrophys. J. 868, 96 (2018).

    ADS 

    Google Scholar
     

  • van Dokkum, P. et al. An enigmatic population of luminous globular clusters in a galaxy lacking dark matter. Astrophys. J. 856, L30 (2018).

    ADS 

    Google Scholar
     

  • van Dokkum, P., Danieli, S., Abraham, R. & Romanowsky, A. J. A second galaxy missing dark matter in the NGC 1052 group. Astrophys. J. 874, L5 (2019).

    ADS 

    Google Scholar
     

  • Dutta Chowdhury, D., van den Bosch, F. C. & van Dokkum, P. On the orbital decay of globular clusters in NGC 1052-DF2: testing a baryon-only mass model. Astrophys. J. 877, 133 (2019).

    ADS 

    Google Scholar
     

  • Dutta Chowdhury, D., van den Bosch, F. C. & van Dokkum, P. On the evolution of the globular cluster system in NGC 1052-DF2: dynamical friction, globular-globular interactions, and galactic tides. Astrophys. J. 903, 149 (2020).

    ADS 

    Google Scholar
     

  • Shen, Z., van Dokkum, P. & Danieli, S. A complex luminosity function for the anomalous globular clusters in NGC 1052-DF2 and NGC 1052-DF4. Astrophys. J. 909, 179 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • van Dokkum, P. et al. A galaxy lacking dark matter. Nature 555, 629–632 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • van Dokkum, P. et al. A revised velocity for the globular cluster GC-98 in the ultra diffuse galaxy NGC 1052-DF2. Res. Not. Am. Astron. Soc. 2, 54 (2018).

    ADS 

    Google Scholar
     

  • Danieli, S., van Dokkum, P., Conroy, C., Abraham, R. & Romanowsky, A. J. Still missing dark matter: KCWI high-resolution stellar kinematics of NGC1052-DF2. Astrophys. J. 874, L12 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Emsellem, E. et al. The ultra-diffuse galaxy NGC 1052-DF2 with MUSE. I. Kinematics of the stellar body. Astron. Astrophys. 625, A76 (2019).

    CAS 

    Google Scholar
     

  • Silk, J. Ultra-diffuse galaxies without dark matter. Mon. Not. R. Astron. Soc. 488, L24–L28 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Shin, E.-j et al. Dark matter deficient galaxies produced via high-velocity galaxy collisions in high-resolution numerical simulations. Astrophys. J. 899, 25 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Lee, J., Shin, E.-j & Kim, J.-h Dark matter deficient galaxies and their member star clusters form simultaneously during high-velocity galaxy collisions in 1.25 pc resolution simulations. Astrophys. J. 917, L15 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Clowe, D. et al. A direct empirical proof of the existence of dark matter. Astrophys. J. 648, L109–L113 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Danieli, S. et al. A tip of the red giant branch distance to the dark matter deficient galaxy NGC1052-DF4 from deep Hubble Space Telescope data. Astrophys. J. 895, L4 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Shen, Z. et al. A tip of the red giant branch distance of 22.1 ± 1.2 Mpc to the dark matter deficient galaxy NGC 1052-DF2 from 40 orbits of Hubble Space Telescope imaging. Astrophys. J. 914, L12 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Forbes, D. A., Alabi, A., Brodie, J. P. & Romanowsky, A. J. Dark matter and no dark matter: on the halo mass of NGC 1052. Mon. Not. R. Astron. Soc. 489, 3665–3669 (2019).

    ADS 

    Google Scholar
     

  • Trujillo-Gomez, S., Kruijssen, J. M. D., Keller, B. W. & Reina-Campos, M. Constraining the formation of NGC 1052-DF2 from its unusual globular cluster population. Mon. Not. R. Astron. Soc. 506, 4841–4854 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Trujillo-Gomez, S., Kruijssen, J. M. D. & Reina-Campos, M. The emergence of dark matter-deficient ultra-diffuse galaxies driven by scatter in the stellar mass–halo mass relation and feedback from globular clusters. Mon. Not. R. Astron. Soc. 510, 3356–3378 (2022).

  • van Dokkum, P., Danieli, S., Romanowsky, A., Abraham, R. & Conroy, C. The distance to NGC 1042 in the context of its proposed association with the dark matter-deficient galaxies NGC 1052-DF2 and NGC 1052-DF4. Mon. Not. R. Astron. Soc. 3, 29 (2019).


    Google Scholar
     

  • Keim, M. A. et al. Tidal distortions in NGC1052-DF2 and NGC1052-DF4: independent evidence for a lack of dark matter. Preprint at https://arxiv.org/abs/2109.09778 (2022).

  • Fensch, J. et al. The ultra-diffuse galaxy NGC 1052-DF2 with MUSE. II. The population of DF2: stars, clusters, and planetary nebulae. Astron. Astrophys. 625, A77 (2019).

    CAS 

    Google Scholar
     

  • Román, J., Castilla, A. & Pascual-Granado, J. Discovery and analysis of low-surface-brightness galaxies in the environment of NGC 1052. Astron. Astrophys. 656, A44 (2021).

    ADS 

    Google Scholar
     

  • Duda, R. O. & Hart, P. E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15, 11–15 (1972).

    MATH 

    Google Scholar
     

  • Rich, R. M. et al. A tidally distorted dwarf galaxy near NGC 4449. Nature 482, 192–194 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Randall, S. W., Markevitch, M., Clowe, D., Gonzalez, A. H. & Bradač, M. Constraints on the self-interaction cross section of dark matter from numerical simulations of the merging galaxy cluster 1E 0657-56. Astrophys. J. 679, 1173–1180 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Spergel, D. N. & Steinhardt, P. J. Observational evidence for self-interacting cold dark matter. Phys. Rev. Lett. 84, 3760–3763 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tulin, S. & Yu, H.-B. Dark matter self-interactions and small scale structure. Phys. Rep. 730, 1–57 (2018).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Bouillot, V. R., Alimi, J.-M., Corasaniti, P.-S. & Rasera, Y. Probing dark energy models with extreme pairwise velocities of galaxy clusters from the DEUS-FUR simulations. Mon. Not. R. Astron. Soc. 450, 145–159 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Pillepich, A. et al. Simulating galaxy formation with the IllustrisTNG model. Mon. Not. R. Astron. Soc. 473, 4077–4106 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Dark Energy Survey Collaboration. The Dark Energy Survey: more than dark energy—an overview. Mon. Not. R. Astron. Soc. 460, 1270–1299 (2016).

    ADS 

    Google Scholar
     

  • Erwin, P. IMFIT: a fast, flexible new program for astronomical image fitting. Astrophys. J. 799, 226 (2015).

    ADS 

    Google Scholar
     

  • Beers, T. C., Flynn, K. & Gebhardt, K. Measures of location and scale for velocities in clusters of galaxies—a robust approach. Astrophys. J. 100, 32–46 (1990).


    Google Scholar
     

  • Bailin, J., Power, C., Norberg, P., Zaritsky, D. & Gibson, B. K. The anisotropic distribution of satellite galaxies. Mon. Not. R. Astron. Soc. 390, 1133–1156 (2008).

    ADS 

    Google Scholar
     

  • Tempel, E., Guo, Q., Kipper, R. & Libeskind, N. I. The alignment of satellite galaxies and cosmic filaments: observations and simulations. Mon. Not. R. Astron. Soc. 450, 2727–2738 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Probing the intrinsic shape and alignment of dark matter haloes using SDSS galaxy groups. Mon. Not. R. Astron. Soc. 385, 1511–1522 (2008).

    ADS 

    Google Scholar
     

  • Silverman, B. W. Density Estimation for Statistics and Data Analysis (Chapman & Hall, 1986).

  • Trujillo, I. et al. Introducing the LBT Imaging of Galactic Halos and Tidal Structures (LIGHTS) survey. A preview of the low surface brightness Universe to be unveiled by LSST. Astron. Astrophys. 654, A40 (2021).

    CAS 

    Google Scholar
     

  • Martin, N. F., Collins, M. L. M., Longeard, N. & Tollerud, E. Current velocity data on dwarf galaxy NGC 1052-DF2 do not constrain it to lack dark matter. Astrophys. J. 859, L5 (2018).

    ADS 

    Google Scholar
     

  • Trujillo, I. et al. A distance of 13 Mpc resolves the claimed anomalies of the galaxy lacking dark matter. Mon. Not. R. Astron. Soc. 486, 1192–1219 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Monelli, M. & Trujillo, I. The TRGB distance to the second galaxy “missing dark matter”: evidence for two groups of galaxies at 13.5 and 19 Mpc in the line of sight of NGC 1052. Astrophys. J. 880, L11 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Ogiya, G. Tidal stripping as a possible origin of the ultra diffuse galaxy lacking dark matter. Mon. Not. R. Astron. Soc. 480, L106–L110 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Macciò, A. V. et al. Creating a galaxy lacking dark matter in a dark matter-dominated universe. Mon. Not. R. Astron. Soc. 501, 693–700 (2021).

    ADS 

    Google Scholar
     

  • Jackson, R. A. et al. Dark matter-deficient dwarf galaxies form via tidal stripping of dark matter in interactions with massive companions. Mon. Not. R. Astron. Soc. 502, 1785–1796 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Moreno, J. et al. Galaxies lacking dark matter produced by close encounters in a cosmological simulation. Nat. Astron. https://doi.org/10.1038/s41550-021-01598-4 (2022).

  • Montes, M. et al. The galaxy “missing dark matter” NGC 1052-DF4 is undergoing tidal disruption. Astrophys. J. 904, 114 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Montes, M., Trujillo, I., Infante-Sainz, R., Monelli, M. & Borlaff, A. S. A disk and no signatures of tidal distortion in the galaxy “lacking” dark matter NGC 1052-DF2. Astrophys. J. 919, 56 (2021).

    ADS 
    CAS 

    Google Scholar
     



  • Source link