• Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nakatsuka, N. et al. Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362, 319–324 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kishida, K. T. et al. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward. Proc. Natl Acad. Sci. 113, 200–205 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wise, R. A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Naughton, M., Mulrooney, J. B. & Leonard, B. E. A review of the role of serotonin receptors in psychiatric disorders. Hum. Psychopharmacol. 15, 397–415 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hyman, S. E. & Malenka, R. C. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat. Rev. Neurosci. 2, 695–703 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Russo, S. J. & Nestler, E. J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 14, 609–625 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cummings, J. L. Depression and Parkinson’s disease: a review. Am. J. Psychiatry 149, 443–454 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Spohn, S. N. & Mawe, G. M. Non-conventional features of peripheral serotonin signalling-the gut and beyond. Nat. Rev. Gastroenterol. Hepatol. 14, 412–420 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9, 286–294 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marvin, J. S. et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10, 162–170 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sun, F. et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481–496.e19 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Robinson, D. L., Venton, B. J., Heien, M. L. A. V. & Wightman, R. M. Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin. Chem. 49, 1763–1773 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hashemi, P., Dankoski, E. C., Petrovic, J., Keithley, R. B. & Wightman, R. M. Voltammetric detection of 5-hydroxytryptamine release in the rat brain. Anal. Chem. 81, 9462–9471 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schwerdt, H. N. et al. Long-term dopamine neurochemical monitoring in primates. Proc. Natl Acad. Sci. 114, 13260–13265 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Taylor, I. M. et al. Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes. Biosens. Bioelectron. 89, 400–410 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Clark, J. J. et al. Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat. Methods 7, 126–129 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moran, R. J. et al. The protective action encoding of serotonin transients in the human brain. Neuropsychopharmacology 43, 1425–1435 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bang, D. et al. Sub-second dopamine and serotonin signaling in human striatum during perceptual decision-making. Neuron 108, 999–1010.e6 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vázquez-Guardado, A., Yang, Y., Bandodkar, A. J. & Rogers, J. A. Recent advances in neurotechnologies with broad potential for neuroscience research. Nat. Neurosci. 23, 1522–1536 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hong, G. & Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Deng, J. et al. Electrical bioadhesive interface for bioelectronics. Nat. Mater20, 229–236 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Frank, J. A., Antonini, M. J. & Anikeeva, P. Next-generation interfaces for studying neural function. Nat. Biotechnol. 37, 1013–1023 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee, S. et al. Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat. Nanotechnol. 14, 156–160 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Terem, I. et al. Revealing sub-voxel motions of brain tissue using phase-based amplified MRI (aMRI). Magn. Reson. Med. 80, 2549–2559 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Spencer, K. C. et al. Characterization of mechanically matched hydrogel coatings to improve the biocompatibility of neural implants. Sci. Rep. 7, 1952 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schwerdt, H. N. et al. Subcellular probes for neurochemical recording from multiple brain sites. Lab Chip 17, 1104–1115 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mazzuoli-Weber, G. & Schemann, M. Mechanosensitivity in the enteric nervous system. Front. Cell. Neurosci. 9, 408 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, B. A., Bian, X., Quaiserová-Mocko, V., Galligan, J. J. & Swain, G. M. In vitro continuous amperometric monitoring of 5-hydroxytryptamine release from enterochromaffin cells of the guinea pig ileum. Analyst 132, 41–47 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Osorio, N. & Delmas, P. Patch clamp recording from enteric neurons in situ. Nat. Protoc. 6, 15–27 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Bucher, E. S. & Wightman, R. M. Electrochemical analysis of neurotransmitters. Annu. Rev. Anal. Chem. 8, 239–261 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Xu, C., Wu, F., Yu, P. & Mao, L. In vivo electrochemical sensors for neurochemicals: recent update. ACS Sens. 4, 3102–3118 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kinloch, I. A., Suhr, J., Lou, J., Young, R. J. & Ajayan, P. M. Composites with carbon nanotubes and graphene: an outlook. Science 362, 547–553 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sun, D. et al. Electrodeposition synthesis of a NiO/CNT/PEDOT composite for simultaneous detection of dopamine, serotonin, and tryptophan. Sens. Actuators B Chem. 259, 433–442 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Yang, W. et al. Enhancing electrochemical detection of dopamine via dumbbell-like FePt–Fe3O4 nanoparticles. Nanoscale 9, 1022–1027 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fernandes, D. M. et al. Novel electrochemical sensor based on N-doped carbon nanotubes and Fe3O4 nanoparticles: simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. J. Colloid Interface Sci. 432, 207–213 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Salinas-Hernández, X. I. et al. Dopamine neurons drive fear extinction learning by signaling the omission of expected aversive outcomes. eLife 7, e38818 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bertrand, P. P., Hu, X., Mach, J. & Bertrand, R. L. Serotonin (5-HT) release and uptake measured by real-time electrochemical techniques in the rat ileum. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G1228–G1236 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bertrand, P. P. Real-time measurement of serotonin release and motility in guinea pig ileum. J. Physiol. 577, 689–704 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bertrand, P. P. & Bertrand, R. L. Serotonin release and uptake in the gastrointestinal tract. Auton. Neurosci. 153, 47–57 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bertrand, P. P. Real-time detection of serotonin release from enterochromaffin cells of the guinea-pig ileum. Neurogastroenterol. Motil. 16, 511–514 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10, 473–486 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gershon, M. D. & Tack, J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132, 397–414 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Okayasu, I. et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98, 694–702 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Linden, D. R., Chen, J. X., Gershon, M. D., Sharkey, K. A. & Mawe, G. M. Serotonin availability is increased in mucosa of guinea pigs with TNBS-induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 285, 761–768 (2003).

    Article 

    Google Scholar
     

  • Padmanabhan, P., Grosse, J., Asad, A. B. M. A., Radda, G. K. & Golay, X. Gastrointestinal transit measurements in mice with 99mTc-DTPA-labeled activated charcoal using NanoSPECT-CT. EJNMMI Res. 3, 60 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Singh, M. K. & Bandyopadhyay, D. Design and synthesis of nanoporous perylene bis-imide linked metalloporphyrin frameworks and their catalytic activity. J. Chem. Sci. 128, 1–8 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Lin, J. et al. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Metscher, B. D. MicroCT for comparative morphology: Simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiology 9, 11 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Roberts, J. G. & Sombers, L. A. Fast-scan cyclic voltammetry: chemical sensing in the brain and beyond. Anal. Chem. 90, 490–504 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Howard, C. D., Li, H., Geddes, C. E. & Jin, X. Dynamic nigrostriatal dopamine biases action selection. Neuron 93, 1436–1450.e8 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stamford, J. A., Kruk, Z. L. & Millar, J. Striatal dopamine terminals release serotonin after 5-HTP pretreatment: in vivo voltammetric data. Brain Res. 515, 173–180 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Swamy, B. E. K. & Venton, B. J. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo. Analyst 132, 876–884 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jackson, B. P. & Mark Wightman, R. Dynamics of 5-hydroxytryptamine released from dopamine neurons in the caudate putamen of the rat. Brain Res. 674, 163–166 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tatem, K. S. et al. Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases. J. Vis. Exp. 29, 51785 (2014).


    Google Scholar
     

  • Lynch, J. J., Castagné, V., Moser, P. C. & Mittelstadt, S. W. Comparison of methods for the assessment of locomotor activity in rodent safety pharmacology studies. J. Pharmacol. Toxicol. Methods 64, 74–80 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hoibian, E., Florens, N., Koppe, L., Vidal, H. & Soulage, C. O. Distal colon motor dysfunction in mice with chronic kidney disease: putative role of uremic toxins. Toxins 10, 204 (2018).

    PubMed Central 
    Article 

    Google Scholar
     

  • Wirtz, S. et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat. Protoc. 12, 1295–1309 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tainaka, K. et al. Chemical landscape for tissue clearing based on hydrophilic reagents. Cell Rep. 24, 2196–2210.e9 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Swaminathan, M. et al. Video imaging and spatiotemporal maps to analyze gastrointestinal motility in mice. J. Vis. Exp. 2016, e53828 (2016).


    Google Scholar
     

  • Spear, E. T. et al. Altered gastrointestinal motility involving autoantibodies in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Neurogastroenterol. Motil. 30, e13349 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     



  • Source link