• Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20–44 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kahn, S. E., Hull, R. L. & Utzschneider, K. M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwalie, P. C. et al. A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature 559, 103–108 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Burl, R. B. et al. Deconstructing adipogenesis induced by β3-adrenergic receptor activation with single-cell expression profiling. Cell Metab. 28, 300–309.e4 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merrick, D. et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 364, eaav2501 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hepler, C. et al. Identification of functionally distinct fibro-inflammatory and adipogenic stromal subpopulations in visceral adipose tissue of adult mice. eLife 7, e39636 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vijay, J. et al. Single-cell analysis of human adipose tissue identifies depot- and disease-specific cell types. Nat. Metab. 2, 97–109 (2020).

    PubMed 

    Google Scholar
     

  • Rajbhandari, P. et al. Single cell analysis reveals immune cell–adipocyte crosstalk regulating the transcription of thermogenic adipocytes. eLife 8, e49501 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sárvári, A. K. et al. Plasticity of epididymal adipose tissue in response to diet-induced obesity at single-nucleus resolution. Cell Metab. 33, 437–453.e5 (2021).

    PubMed 

    Google Scholar
     

  • Sun, W. et al. snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 587, 98–102 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Benites-Zapata, V. A. et al. High waist-to-hip ratio levels are associated with insulin resistance markers in normal-weight women. Diabetes Metab. Syndr. Clin. Res. Rev. 13, 636–642 (2019).


    Google Scholar
     

  • Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat. Commun. 10, 380 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raulerson, C. K. et al. Adipose tissue gene expression associations reveal hundreds of candidate genes for cardiometabolic traits. Am. J. Hum. Genet. 105, 773–787 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blüher, M. Transgenic animal models for the study of adipose tissue biology. Best Pract. Res. Clin. Endocrinol. Metab. 19, 605–623 (2005).

    PubMed 

    Google Scholar
     

  • Rinaldi, V. D. et al. An atlas of cell types in the mouse epididymis and vas deferens. eLife 9, e55474 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hildreth, A. D. et al. Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat. Immunol. 22, 639–653 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suganami, T. & Ogawa, Y. Adipose tissue macrophages: their role in adipose tissue remodeling. J. Leukoc. Biol. 88, 33–39 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reilly, S. M. & Saltiel, A. R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 13, 633–643 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Shi, M. & Shi, G.-P. Different roles of mast cells in obesity and diabetes: lessons from experimental animals and humans. Front. Immunol. 3, 7 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrero, R., Rainer, P. & Deplancke, B. Toward a consensus view of mammalian adipocyte stem and progenitor cell heterogeneity. Trends Cell Biol. 30, 937 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q. A., Tao, C., Gupta, R. K. & Scherer, P. E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 19, 1338–1344 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeffery, E., Church, C. D., Holtrup, B., Colman, L. & Rodeheffer, M. S. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat. Cell Biol. 17, 376–385 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bäckdahl, J. et al. Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin. Cell Metab. 33, 1869–1882.e6 (2021).

    PubMed 

    Google Scholar
     

  • Stefan, N. et al. Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans. Diabetes Care 33, 405–407 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Laber, S. et al. Discovering cellular programs of intrinsic and extrinsic drivers of metabolic traits using LipocyteProfiler. Preprint at https://doi.org/10.1101/2021.07.17.452050 (2021).

  • Rajakumari, S. et al. EBF2 determines and maintains brown adipocyte identity. Cell Metab. 17, 562–574 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pulit, S. L. et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum. Mol. Genet. 28, 166–174 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Agrawal, S. et al. Inherited basis of visceral, abdominal subcutaneous and gluteofemoral fat depots. Preprint at https://doi.org/10.1101/2021.08.24.21262564 (2021).

  • Willows, J. W. et al. Visualization and analysis of whole depot adipose tissue neural innervation. iScience 24, 103127 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roh, H. C. et al. Adipocytes fail to maintain cellular identity during obesity due to reduced PPARγ activity and elevated TGFβ–SMAD signaling. Mol. Metab. 42, 101086 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, J. et al. Progenitor-like characteristics in a subgroup of UCP1+ cells within white adipose tissue. Dev. Cell 56, 985–999.e4 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Priest, C. & Tontonoz, P. Inter-organ cross-talk in metabolic syndrome. Nat. Metab. 1, 1177–1188 (2019).

    PubMed 

    Google Scholar
     

  • Schling, P. & Löffler, G. Cross talk between adipose tissue cells: impact on pathophysiology. News Physiol. Sci. 17, 99–104 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Kane, H. & Lynch, L. Innate immune control of adipose tissue homeostasis. Trends Immunol. 40, 857–872 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    CAS 

    Google Scholar
     

  • Cao, Y. Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab. 18, 478–489 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Hubert, A. et al. Selective deletion of leptin signaling in endothelial cells enhances neointima formation and phenocopies the vascular effects of diet-induced obesity in mice. Arterioscler. Thromb. Vasc. Biol. 37, 1683–1697 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Scott, R. A. et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes 66, 2888–2902 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, L. O. et al. Genome-wide discovery of genetic loci that uncouple excess adiposity from its comorbidities. Nat. Metab. 3, 228–243 (2021).

    PubMed 

    Google Scholar
     

  • Timshel, P. N., Thompson, J. J. & Pers, T. H. Genetic mapping of etiologic brain cell types for obesity. eLife 9, e55851 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Rahilly, S. & Farooqi, I. S. Human obesity as a heritable disorder of the central control of energy balance. Int. J. Obes. 32 (Suppl. 7), S55–S61 (2008).

  • Sailer, S., Keller, M. A., Werner, E. R. & Watschinger, K. The emerging physiological role of AGMO 10 years after its gene identification. Life 11, 88 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 42, 105–116 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loh, N. Y. et al. RSPO3 impacts body fat distribution and regulates adipose cell biology in vitro. Nat. Commun. 11, 2797 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chi, J. et al. Three-dimensional adipose tissue imaging reveals regional variation in beige fat biogenesis and PRDM16-dependent sympathetic neurite density. Cell Metab. 27, 226–236.e3 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Katz, A. et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 85, 2402–2410 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985).

    CAS 

    Google Scholar
     

  • Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drokhlyansky, E. et al. The human and mouse enteric nervous system at single-cell resolution. Cell 182, 1606–1622.e23 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slyper, M. et al. A single-cell and single-nucleus RNA-seq toolbox for fresh and frozen human tumors. Nat. Med. 26, 792–802 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delorey, T. M. et al. A single-cell and spatial atlas of autopsy tissues reveals pathology and cellular targets of SARS-CoV-2. Preprint at https://doi.org/10.1101/2021.02.25.430130 (2021).

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 

    Google Scholar
     

  • CellBender remove-background: a deep generative model for unsupervised removal of background noise from scRNA-seq datasets. Preprint at https://doi.org/10.1101/791699 (2019).

  • Lun, A. T. L. et al. EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol. 20, 63 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291.e9 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srivastava, A. et al. Alignment and mapping methodology influence transcript abundance estimation. Genome Biol. 21, 239 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research 4, 1521 (2015).

    PubMed 

    Google Scholar
     

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS J. Integr. Biol. 16, 284–287 (2012).

    CAS 

    Google Scholar
     

  • Littlejohns, T. J. et al. The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nat. Commun. 11, 2624 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agrawal, S. et al. Association of machine learning-derived measures of body fat distribution in >40,000 individuals with cardiometabolic diseases. Preprint at https://doi.org/10.1101/2021.05.07.21256854 (2021).

  • Kichaev, G. et al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 104, 65–75 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Pruim, R. J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed-model association for biobank-scale datasets. Nat. Genet. 50, 906–908 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bradfield, J. P. et al. A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet. 7, e1002293 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loh, P.-R. et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 48, 1443–1448 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Büttner, M., Ostner, J., Müller, C., Theis, F. & Schubert, B. scCODA: a Bayesian model for compositional single-cell data analysis. Nat. Commun. 12, 6876 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link